Frontalization and adaptive exponential ensemble rule for deep-learning-based facial expression recognition system

Automatic facial expression recognition (FER) is an important technique in human–computer interfaces and surveillance systems. It classifies the input facial image into one of the basic expressions (anger, sadness, surprise, happiness, disgust, fear, and neutral). There are two types of FER algorith...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Signal processing. Image communication Ročník 96; s. 116321
Hlavní autori: Tsai, Kai-Yuan, Tsai, Yi-Wei, Lee, Yih-Cherng, Ding, Jian-Jiun, Chang, Ronald Y.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Amsterdam Elsevier B.V 01.08.2021
Elsevier BV
Predmet:
ISSN:0923-5965, 1879-2677
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Automatic facial expression recognition (FER) is an important technique in human–computer interfaces and surveillance systems. It classifies the input facial image into one of the basic expressions (anger, sadness, surprise, happiness, disgust, fear, and neutral). There are two types of FER algorithms: feature-based and convolutional neural network (CNN)-based algorithms. The CNN is a powerful classifier, however, without proper auxiliary techniques, its performance may be limited. In this study, we improve the CNN-based FER system by utilizing face frontalization and the hierarchical architecture. The frontalization algorithm aligns the face by in-plane or out-of-plane, rotation, landmark point matching, and removing background noise. The proposed adaptive exponentially weighted average ensemble rule can determine the optimal weight according to the accuracy of classifiers to improve robustness. Experiments on several popular databases are performed and the results show that the proposed system has a very high accuracy and outperforms state-of-the-art FER systems. [Display omitted] •An advanced CNN based facial expression recognition (FER) method is proposed.•Its accuracy is higher than that of other stated-of-the-art CNN-based methods.•Advanced frontalization method is used to make the input of the CNN more meaningful.•A hierarchical AEWEA system is applied to integrate the advantages of each model.•The shortcut CNN, which considers block relations and is easier to train, is adopted.
AbstractList Automatic facial expression recognition (FER) is an important technique in human–computer interfaces and surveillance systems. It classifies the input facial image into one of the basic expressions (anger, sadness, surprise, happiness, disgust, fear, and neutral). There are two types of FER algorithms: feature-based and convolutional neural network (CNN)-based algorithms. The CNN is a powerful classifier, however, without proper auxiliary techniques, its performance may be limited. In this study, we improve the CNN-based FER system by utilizing face frontalization and the hierarchical architecture. The frontalization algorithm aligns the face by in-plane or out-of-plane, rotation, landmark point matching, and removing background noise. The proposed adaptive exponentially weighted average ensemble rule can determine the optimal weight according to the accuracy of classifiers to improve robustness. Experiments on several popular databases are performed and the results show that the proposed system has a very high accuracy and outperforms state-of-the-art FER systems.
Automatic facial expression recognition (FER) is an important technique in human–computer interfaces and surveillance systems. It classifies the input facial image into one of the basic expressions (anger, sadness, surprise, happiness, disgust, fear, and neutral). There are two types of FER algorithms: feature-based and convolutional neural network (CNN)-based algorithms. The CNN is a powerful classifier, however, without proper auxiliary techniques, its performance may be limited. In this study, we improve the CNN-based FER system by utilizing face frontalization and the hierarchical architecture. The frontalization algorithm aligns the face by in-plane or out-of-plane, rotation, landmark point matching, and removing background noise. The proposed adaptive exponentially weighted average ensemble rule can determine the optimal weight according to the accuracy of classifiers to improve robustness. Experiments on several popular databases are performed and the results show that the proposed system has a very high accuracy and outperforms state-of-the-art FER systems. [Display omitted] •An advanced CNN based facial expression recognition (FER) method is proposed.•Its accuracy is higher than that of other stated-of-the-art CNN-based methods.•Advanced frontalization method is used to make the input of the CNN more meaningful.•A hierarchical AEWEA system is applied to integrate the advantages of each model.•The shortcut CNN, which considers block relations and is easier to train, is adopted.
ArticleNumber 116321
Author Ding, Jian-Jiun
Tsai, Yi-Wei
Chang, Ronald Y.
Tsai, Kai-Yuan
Lee, Yih-Cherng
Author_xml – sequence: 1
  givenname: Kai-Yuan
  surname: Tsai
  fullname: Tsai, Kai-Yuan
  email: r05942109@ntu.edu.tw
  organization: Graduate Inst. Communication Engineering, National Taiwan University, Taipei, Taiwan
– sequence: 2
  givenname: Yi-Wei
  surname: Tsai
  fullname: Tsai, Yi-Wei
  email: r08942044@ntu.edu.tw
  organization: Graduate Inst. Communication Engineering, National Taiwan University, Taipei, Taiwan
– sequence: 3
  givenname: Yih-Cherng
  orcidid: 0000-0002-5905-1967
  surname: Lee
  fullname: Lee, Yih-Cherng
  email: d04942009@ntu.edu.tw
  organization: Graduate Inst. Communication Engineering, National Taiwan University, Taipei, Taiwan
– sequence: 4
  givenname: Jian-Jiun
  orcidid: 0000-0003-4510-2273
  surname: Ding
  fullname: Ding, Jian-Jiun
  email: jjding@ntu.edu.tw
  organization: Graduate Inst. Communication Engineering, National Taiwan University, Taipei, Taiwan
– sequence: 5
  givenname: Ronald Y.
  surname: Chang
  fullname: Chang, Ronald Y.
  email: rchang@citi.sinica.edu.tw
  organization: Research Center for Information Technology Innovation, Academia Sinica, Taipei, Taiwan
BookMark eNqFkLFOwzAURS1UJNrCF7BEYk6xncSpBwZUUUBCYoHZenFeKlepHWy3Knw9bsvEAB7s5Z77ns-EjKyzSMg1ozNGmbhdz8wGVjjjlLMZY6Lg7IyM2byWORd1PSJjKnmRV1JUF2QSwppSyksqx8QvvbMRevMF0TibgW0zaGGIZocZ7oc0x0YDfYY24KbpMfPbdHXOZy3ikPcI3hq7yhsI2GYd6GN4P3gM4VDoUbuVNcfy8Bkibi7JeQd9wKufd0relw9vi6f85fXxeXH_kuuiYDEXgKA7QHo4FWt509R1W2DJaTOfay4ECIqApSyrhkmRtpYgOt1prGsKrJiSm1Pv4N3HFkNUa7f1No1UvColrURFaUoVp5T2LgSPnRp8kuk_FaPqIFet1VGuOshVJ7mJkr8obeLRYPRg-n_YuxOL6fM7g14FbdBqbE2SFVXrzJ_8N3W4m34
CitedBy_id crossref_primary_10_1109_TCSS_2023_3305616
crossref_primary_10_1002_cpe_7137
crossref_primary_10_1007_s12065_024_00969_w
crossref_primary_10_1016_j_engappai_2022_105486
crossref_primary_10_1007_s00371_022_02655_3
crossref_primary_10_1109_ACCESS_2025_3582643
crossref_primary_10_1016_j_image_2023_116921
crossref_primary_10_1007_s11042_023_16756_1
crossref_primary_10_1007_s11042_024_20079_0
crossref_primary_10_4018_JGIM_300741
crossref_primary_10_1049_ipr2_12700
Cites_doi 10.1016/S0921-8890(99)00103-7
10.1037/0003-066X.48.4.384
10.1016/j.sigpro.2019.03.015
10.1016/j.imavis.2008.08.005
10.1109/TIP.2014.2311377
10.1109/CVPR.2016.602
10.1109/TIP.2012.2190083
10.1016/j.sigpro.2015.04.007
10.1007/s12559-017-9472-6
10.1109/ACCESS.2019.2907327
10.1007/s11042-016-4324-z
10.1109/TAFFC.2014.2386334
10.1109/TIP.2019.2956143
10.1109/ICCV.2003.1238640
10.1049/iet-ipr.2015.0519
10.1007/s00521-014-1569-1
10.1016/j.sigpro.2012.08.007
10.1109/TPAMI.2007.1110
10.1109/LSP.2016.2603342
10.1109/72.554195
10.1109/CVPR.2014.233
10.1109/TIP.2018.2886767
10.1109/ACCESS.2017.2712788
10.1109/ACCESS.2019.2917266
10.1007/s12193-015-0209-0
10.1109/TIP.2017.2726010
10.1109/TCYB.2016.2591583
10.1016/j.neucom.2017.06.050
10.1109/TCYB.2014.2336697
10.1016/j.image.2019.01.002
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright Elsevier BV Aug 2021
Copyright_xml – notice: 2021 Elsevier B.V.
– notice: Copyright Elsevier BV Aug 2021
DBID AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.image.2021.116321
DatabaseName CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Computer Science
EISSN 1879-2677
ExternalDocumentID 10_1016_j_image_2021_116321
S0923596521001399
GroupedDBID --K
--M
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
WUQ
XPP
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ADNMO
AEIPS
AFJKZ
AGQPQ
AIIUN
ANKPU
APXCP
CITATION
EFKBS
~HD
7SC
7SP
8FD
AGCQF
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c331t-6aeacfae0000051d2bb77d3e420b88c266a60eae4945b196ada9a6fcfce770a13
ISICitedReferencesCount 12
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000657392200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0923-5965
IngestDate Wed Aug 13 09:19:40 EDT 2025
Sat Nov 29 07:10:08 EST 2025
Tue Nov 18 22:31:02 EST 2025
Fri Feb 23 02:44:27 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Computer vision
Face frontalization
Face recognition
Convolutional neural network
Facial expression
Hierarchical structure
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c331t-6aeacfae0000051d2bb77d3e420b88c266a60eae4945b196ada9a6fcfce770a13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5905-1967
0000-0003-4510-2273
PQID 2549056500
PQPubID 2045400
ParticipantIDs proquest_journals_2549056500
crossref_primary_10_1016_j_image_2021_116321
crossref_citationtrail_10_1016_j_image_2021_116321
elsevier_sciencedirect_doi_10_1016_j_image_2021_116321
PublicationCentury 2000
PublicationDate August 2021
2021-08-00
20210801
PublicationDateYYYYMMDD 2021-08-01
PublicationDate_xml – month: 08
  year: 2021
  text: August 2021
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Signal processing. Image communication
PublicationYear 2021
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Y. Zhang, Q. Ji, Facial expression understanding in image sequences using dynamic and active visual information fusion, in: Proc. IEEE Int. Conf. Computer Vision, 2003, pp. 1297-1304.
Guo, Dyer (b50) 2003
Li, Zeng, Shan, Chen (b41) 2018; 28
Neelam, Singh, Prakash (b28) 2015; 6
Zhang, Lyons, Schuster, Akamatsu (b26) 1998
Cai, Meng, Khan, Li, O’Reilly, Tong (b35) 2019
Meng, Liu, Cai, Han, Tong (b43) 2017
Yu, Yang, Gao, Tao (b5) 2016; 47
Sun, Zhao, Jin (b16) 2017; 267
Devries, Biswaranjan, Taylor (b56) 2014
Liu, Han, Meng, Tong (b8) 2014
Kim, Roh, Dong, Lee (b30) 2016; 10
Kamarol, Jawad, Parkkinen, Parthiban (b54) 2016; 10
Chang, Wen, Hu, Ma (b60) 2018
Makhmudkhujaev, Abdullah-Al-Wadud, Iqbal, Ryu, Chae (b39) 2019; 74
Cireşan, Meier, Schmidhuber (b46) 2012
Happy, Routray (b12) 2015; 6
Yu, Rui, Tao (b3) 2014; 23
Chao, Ding, Liu (b10) 2015; 117
Kim, Kim, Roy, Jeong (b34) 2019; 7
Hasani, Mahoor (b23) 2017
Fu, Ruan, Luo, Jin, An, Wan (b18) 2019; 161
Ionescu, Popescu, Grozea (b55) 2013
Zhang, Zhang, Li, Qiao (b44) 2016; 23
Lopes, de Aguiar, Oliveira-Santos (b45) 2015
P. Liu, S. Han, Z. Meng, Y. Tong, Facial expression recognition via a boosted deep belief network, in: Proc. IEEE Conf. Computer Vision and Pattern Recognition, 2014, pp. 1805-1812.
Georgescu, Ionescu, Popescu (b36) 2019; 7
Shan, Gong, McOwan (b9) 2009; 27
Carrier, Courville, Goodfellow, Mirza, Bengio (b49) 2013
Uçar, Demir, Güzeliş (b51) 2016; 27
Lucey, Cohn, Kanade, Saragih, Ambadar, Matthews (b47) 2010
Wen, Hou, Li, Li, Jiang, Xun (b59) 2017; 9
Yu, Dacheng, Wang (b4) 2012; 21
Paul (b7) 1993; 48
Danisman, Bilasco, Martinet, Djeraba (b11) 2013; 93
Zhao, Pietikainen (b32) 2007; 29
Muhammad, Alsulaiman, Amin, Ghoneim, Alhamid (b2) 2017; 5
Yu, Tao, Wang, Rui (b6) 2014; 45
Guo, Tao, Yu, Xiong, Li, Tao (b58) 2016
M.J. Lyons, S. Akamatsu, M. Kamachi, J. Gyoba, The Japanese female facial expression (JAFFE) database, in: Proc. Int. Conf. Automatic Face and Gesture Recognition, 1998, pp. 14-16.
Cai, Meng, Khan, Li, O’Reilly, Tong (b40) 2018
Ryu, Rivera, Kim, Chae (b53) 2017; 26
Li, Jain (b24) 2011
Zhang, Zhang, Mao, Xu (b38) 2018
Klaser, Marszałek, Schmid (b31) 2008
Lien, Kanade, Cohn, Li, Detection, tracking (b20) 2000; 31
Lawrence, Giles, Tsoi, Back (b27) 1997; 8
Huang, Liu, van der Maaten (b17) 2017; 1
Byeon, Kwak (b19) 2014; 5
Yang, Liu, Metaxas (b25) 2007
Minaee, Abdolrashidi (b33) 2019
Khan, Hussain, Usman (b14) 2018; 77
Hsu, Huang, Huang (b1) 2017
K. Sikka, G. Sharma, M. Bartlett, Lomo: Latent ordinal model for facial analysis in videos, in: Proc. IEEE Conf. Computer Vision and Pattern Recognition, 2016, pp. 5580-5589.
Liu, Zhang, Pan (b57) 2016
Liu, Li, Shan, Wang, Chen (b15) 2014
Wang, Peng, Yang, Meng, Qiao (b42) 2020; 29
Turan, Lam, He (b13) 2018
Alshamsi, Kepuska, H, Meng (b52) 2017
Yang, Ciftci, Yin (b37) 2018
Devries (10.1016/j.image.2021.116321_b56) 2014
Lopes (10.1016/j.image.2021.116321_b45) 2015
Guo (10.1016/j.image.2021.116321_b58) 2016
Zhang (10.1016/j.image.2021.116321_b26) 1998
Ryu (10.1016/j.image.2021.116321_b53) 2017; 26
Yu (10.1016/j.image.2021.116321_b3) 2014; 23
10.1016/j.image.2021.116321_b21
Cai (10.1016/j.image.2021.116321_b35) 2019
10.1016/j.image.2021.116321_b22
Li (10.1016/j.image.2021.116321_b24) 2011
Zhao (10.1016/j.image.2021.116321_b32) 2007; 29
Kamarol (10.1016/j.image.2021.116321_b54) 2016; 10
Sun (10.1016/j.image.2021.116321_b16) 2017; 267
Klaser (10.1016/j.image.2021.116321_b31) 2008
Turan (10.1016/j.image.2021.116321_b13) 2018
Alshamsi (10.1016/j.image.2021.116321_b52) 2017
Shan (10.1016/j.image.2021.116321_b9) 2009; 27
Hsu (10.1016/j.image.2021.116321_b1) 2017
Liu (10.1016/j.image.2021.116321_b15) 2014
Georgescu (10.1016/j.image.2021.116321_b36) 2019; 7
Danisman (10.1016/j.image.2021.116321_b11) 2013; 93
Ionescu (10.1016/j.image.2021.116321_b55) 2013
Wen (10.1016/j.image.2021.116321_b59) 2017; 9
Lien (10.1016/j.image.2021.116321_b20) 2000; 31
Minaee (10.1016/j.image.2021.116321_b33) 2019
Meng (10.1016/j.image.2021.116321_b43) 2017
Kim (10.1016/j.image.2021.116321_b30) 2016; 10
Chang (10.1016/j.image.2021.116321_b60) 2018
10.1016/j.image.2021.116321_b29
Hasani (10.1016/j.image.2021.116321_b23) 2017
Neelam (10.1016/j.image.2021.116321_b28) 2015; 6
Lucey (10.1016/j.image.2021.116321_b47) 2010
Happy (10.1016/j.image.2021.116321_b12) 2015; 6
Yang (10.1016/j.image.2021.116321_b37) 2018
Huang (10.1016/j.image.2021.116321_b17) 2017; 1
Lawrence (10.1016/j.image.2021.116321_b27) 1997; 8
Liu (10.1016/j.image.2021.116321_b57) 2016
Khan (10.1016/j.image.2021.116321_b14) 2018; 77
Yu (10.1016/j.image.2021.116321_b6) 2014; 45
Fu (10.1016/j.image.2021.116321_b18) 2019; 161
Byeon (10.1016/j.image.2021.116321_b19) 2014; 5
Cai (10.1016/j.image.2021.116321_b40) 2018
Kim (10.1016/j.image.2021.116321_b34) 2019; 7
Wang (10.1016/j.image.2021.116321_b42) 2020; 29
Makhmudkhujaev (10.1016/j.image.2021.116321_b39) 2019; 74
Yu (10.1016/j.image.2021.116321_b5) 2016; 47
Cireşan (10.1016/j.image.2021.116321_b46) 2012
Li (10.1016/j.image.2021.116321_b41) 2018; 28
Carrier (10.1016/j.image.2021.116321_b49) 2013
Yang (10.1016/j.image.2021.116321_b25) 2007
Liu (10.1016/j.image.2021.116321_b8) 2014
Yu (10.1016/j.image.2021.116321_b4) 2012; 21
Zhang (10.1016/j.image.2021.116321_b44) 2016; 23
Uçar (10.1016/j.image.2021.116321_b51) 2016; 27
Muhammad (10.1016/j.image.2021.116321_b2) 2017; 5
Chao (10.1016/j.image.2021.116321_b10) 2015; 117
Guo (10.1016/j.image.2021.116321_b50) 2003
10.1016/j.image.2021.116321_b48
Zhang (10.1016/j.image.2021.116321_b38) 2018
Paul (10.1016/j.image.2021.116321_b7) 1993; 48
References_xml – start-page: 273
  year: 2015
  end-page: 280
  ident: b45
  article-title: A facial expression recognition system using convolutional network
  publication-title: IEEE, SIBGRAPI Conf. Graphics, Patterns and Images
– start-page: 1
  year: 2019
  end-page: 8
  ident: b33
  article-title: Deep-emotion: Facial expression recognition using attentional convolutional network
– start-page: 1
  year: 2003
  end-page: 7
  ident: b50
  article-title: Simultaneous feature selection and classifier training via linear programming: A case study for face expression recognition
  publication-title: IEEE Conf. Computer Vision and Pattern Recognition, Vol. 1
– volume: 29
  start-page: 915
  year: 2007
  end-page: 928
  ident: b32
  article-title: Dynamic texture recognition using local binary patterns with an application to facial expressions
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– start-page: 1
  year: 2016
  end-page: 6
  ident: b58
  article-title: Deep neural networks with relativity learning for facial expression recognition
  publication-title: IEEE Int. Conf. Multimedia & Expo Workshops
– volume: 77
  start-page: 1133
  year: 2018
  end-page: 1165
  ident: b14
  article-title: Reliable facial expression recognition for multi-scale images using weber local binary image based cosine transform features
  publication-title: Multimedia Tools Appl.
– start-page: 790
  year: 2017
  end-page: 795
  ident: b23
  article-title: Spatio-temporal facial expression recognition using convolutional neural networks and conditional random fields
  publication-title: Int. Conf. Automatic Face and Gesture Recognition
– start-page: 98
  year: 2014
  end-page: 103
  ident: b56
  article-title: Multi-task learning of facial landmarks and expression
  publication-title: Canadian Conf. Computer and Robot Vision
– volume: 29
  start-page: 4057
  year: 2020
  end-page: 4069
  ident: b42
  article-title: Region attention networks for pose and occlusion robust facial expression recognition
  publication-title: IEEE Trans. Image Process.
– volume: 7
  start-page: 41273
  year: 2019
  end-page: 41285
  ident: b34
  article-title: Efficient facial expression recognition algorithm based on hierarchical deep neural network structure
  publication-title: IEEE Access
– start-page: 143
  year: 2014
  end-page: 157
  ident: b15
  article-title: Deeply learning deformable facial action parts model for dynamic expression analysis
  publication-title: Asian Conf. Computer Vision
– volume: 1
  start-page: 4700
  year: 2017
  end-page: 4708
  ident: b17
  article-title: Densely connected convolutional networks
  publication-title: IEEE Conf. Computer Vision and Pattern Recognition
– reference: P. Liu, S. Han, Z. Meng, Y. Tong, Facial expression recognition via a boosted deep belief network, in: Proc. IEEE Conf. Computer Vision and Pattern Recognition, 2014, pp. 1805-1812.
– volume: 27
  start-page: 803
  year: 2009
  end-page: 816
  ident: b9
  article-title: Facial expression recognition based on local binary patterns: A comprehensive study
  publication-title: Image Vis. Comput.
– volume: 28
  start-page: 2439
  year: 2018
  end-page: 2450
  ident: b41
  article-title: Occlusion aware facial expression recognition using CNN with attention mechanism
  publication-title: IEEE Trans. Image Process.
– volume: 9
  start-page: 597
  year: 2017
  end-page: 610
  ident: b59
  article-title: Ensemble of deep neural networks with probability-based fusion for facial expression recognition
  publication-title: Cogn. Comput.
– start-page: 94
  year: 2010
  end-page: 101
  ident: b47
  article-title: The extended cohn-kanade dataset (ck+): A complete dataset for action unit and emotion-specified expression
  publication-title: IEEE Computer Vision and Pattern Recognition Workshops
– volume: 117
  start-page: 1
  year: 2015
  end-page: 10
  ident: b10
  article-title: Facial expression recognition based on improved local binary pattern and class-regularized locality preserving projection
  publication-title: Signal Process.
– start-page: 577
  year: 2017
  end-page: 583
  ident: b52
  article-title: Automated facial expression recognition app development on smart phones using cloud computing
  publication-title: Ubiquitous Computing, Electronics and Mobile Communication Conference
– volume: 45
  start-page: 767
  year: 2014
  end-page: 779
  ident: b6
  article-title: Learning to rank using user clicks and visual features for image retrieval
  publication-title: IEEE Trans. Cybern.
– volume: 27
  start-page: 131
  year: 2016
  end-page: 142
  ident: b51
  article-title: A new facial expression recognition based on curvelet transform and online sequential extreme learning machine initialized with spherical clustering
  publication-title: Neural Comput. Appl.
– year: 2008
  ident: b31
  article-title: A spatio-temporal descriptor based on 3d-gradients
  publication-title: British Machine Vision Conference
– volume: 8
  start-page: 98
  year: 1997
  end-page: 113
  ident: b27
  article-title: Face recognition: a convolutional neural-network approach
  publication-title: IEEE Trans. Neural Netw.
– volume: 23
  start-page: 2019
  year: 2014
  end-page: 2032
  ident: b3
  article-title: Click prediction for web image reranking using multimodal sparse coding
  publication-title: IEEE Trans. Image Process.
– reference: M.J. Lyons, S. Akamatsu, M. Kamachi, J. Gyoba, The Japanese female facial expression (JAFFE) database, in: Proc. Int. Conf. Automatic Face and Gesture Recognition, 1998, pp. 14-16.
– volume: 5
  start-page: 10871
  year: 2017
  end-page: 10881
  ident: b2
  article-title: A facial-expression monitoring system for improved healthcare in smart cities
  publication-title: IEEE Access
– volume: 93
  start-page: 1547
  year: 2013
  end-page: 1556
  ident: b11
  article-title: Intelligent pixels of interest selection with application to facial expression recognition using multilayer perceptron
  publication-title: Signal Process.
– year: 2013
  ident: b49
  article-title: FER-2013 Face Database
– volume: 21
  start-page: 3262
  year: 2012
  end-page: 3272
  ident: b4
  article-title: Adaptive hypergraph learning and its application in image classification
  publication-title: IEEE Trans. Image Process.
– volume: 161
  start-page: 74
  year: 2019
  end-page: 88
  ident: b18
  article-title: FERLrTc: 2D+ 3D facial expression recognition via low-rank tensor completion
  publication-title: Signal Process.
– start-page: 2168
  year: 2018
  end-page: 2177
  ident: b37
  article-title: Facial expression recognition by de-expression residue learning
  publication-title: IEEE Conf. Computer Vision and Pattern Recognition
– start-page: 558
  year: 2017
  end-page: 565
  ident: b43
  article-title: Identity-aware convolutional neural network for facial expression recognition
  publication-title: IEEE Int. Conf. Automatic Face and Gesture Recognition
– volume: 10
  start-page: 173
  year: 2016
  end-page: 189
  ident: b30
  article-title: Hierarchical committee of deep convolutional neural networks for robust facial expression recognition
  publication-title: J. Multimodal User Interfaces
– start-page: 1
  year: 2007
  end-page: 6
  ident: b25
  article-title: Boosting coded dynamic features for facial action units and facial expression recognition
  publication-title: IEEE Conf. Computer Vision and Pattern Recognition
– year: 2018
  ident: b60
  article-title: Facial expression recognition based on complexity perception classification algorithm
– volume: 5
  start-page: 97
  year: 2014
  end-page: 106
  ident: b19
  article-title: Facial expression recognition using 3D convolutional neural network
  publication-title: Int. J. Adv. Comput. Sci. Appl.
– reference: Y. Zhang, Q. Ji, Facial expression understanding in image sequences using dynamic and active visual information fusion, in: Proc. IEEE Int. Conf. Computer Vision, 2003, pp. 1297-1304.
– start-page: 1
  year: 2017
  end-page: 7
  ident: b1
  article-title: Facial expression recognition for human–robot interaction
  publication-title: Int. Conf. Robotic Computing
– volume: 31
  start-page: 131
  year: 2000
  end-page: 146
  ident: b20
  article-title: And classification of action units in facial expression
  publication-title: J. Robot. Auton. Syst.
– start-page: 1
  year: 2019
  end-page: 6
  ident: b35
  article-title: Identity-free facial expression recognition using conditional generative adversarial network
– reference: K. Sikka, G. Sharma, M. Bartlett, Lomo: Latent ordinal model for facial analysis in videos, in: Proc. IEEE Conf. Computer Vision and Pattern Recognition, 2016, pp. 5580-5589.
– volume: 6
  start-page: 1
  year: 2015
  end-page: 12
  ident: b12
  article-title: Automatic facial expression recognition using features of salient facial patches
  publication-title: IEEE Trans. Affect. Comput.
– volume: 10
  start-page: 534
  year: 2016
  end-page: 541
  ident: b54
  article-title: Spatiotemporal feature extraction for facial expression recognition
  publication-title: IET Image Process.
– volume: 48
  start-page: 384
  year: 1993
  end-page: 392
  ident: b7
  article-title: Facial expression and emotion
  publication-title: Amer. Psychol.
– start-page: 454
  year: 1998
  end-page: 459
  ident: b26
  article-title: Comparison between geometry-based and gabor-wavelets-based facial expression recognition using multi-layer perceptron
  publication-title: IEEE Int. Conf. Automatic Face and Gesture Recognition
– volume: 26
  start-page: 6006
  year: 2017
  end-page: 6018
  ident: b53
  article-title: Local directional ternary pattern for facial expression recognition
  publication-title: IEEE Trans. Image Process.
– start-page: 163
  year: 2016
  end-page: 166
  ident: b57
  article-title: Facial expression recognition with CNN ensemble
  publication-title: IEEE Int. Conf. Cyberworlds
– start-page: 3642
  year: 2012
  end-page: 3649
  ident: b46
  article-title: Multi-column deep neural networks for image classification
  publication-title: IEEE Conf. Computer Vision and Pattern Recognition
– volume: 267
  start-page: 385
  year: 2017
  end-page: 395
  ident: b16
  article-title: An efficient unconstrained facial expression recognition algorithm based on stack binarized auto-encoders and binarized neural networks
  publication-title: Neurocomputing
– volume: 6
  start-page: 3249
  year: 2015
  end-page: 3251
  ident: b28
  article-title: Facial expression recognition using neural network
  publication-title: Int. J. Comput. Sci. Inf. Technol.
– year: 2011
  ident: b24
  article-title: Handbook of Face Recognition
– year: 2018
  ident: b13
  article-title: Soft locality preserving map (SLPM) for facial expression recognition
– start-page: 302
  year: 2018
  end-page: 309
  ident: b40
  article-title: Island loss for learning discriminative features in facial expression recognition
  publication-title: IEEE Int. Conf. Automatic Face & Gesture Recognition
– start-page: 1
  year: 2013
  end-page: 6
  ident: b55
  article-title: Local learning to improve bag of visual words model for facial expression recognition
  publication-title: ICML Workshop on Challenges in Representation Learning
– start-page: 1805
  year: 2014
  end-page: 1812
  ident: b8
  article-title: Facial expression recognition via a boosted deep belief network
  publication-title: IEEE Conf. Computer Vision and Pattern Recognition
– volume: 74
  start-page: 1
  year: 2019
  end-page: 12
  ident: b39
  article-title: Facial expression recognition with local prominent directional pattern
  publication-title: Signal Process., Image Commun.
– volume: 23
  start-page: 1499
  year: 2016
  end-page: 1503
  ident: b44
  article-title: Joint face detection and alignment using multitask cascaded convolutional networks
  publication-title: IEEE Signal Process. Lett.
– volume: 7
  start-page: 64827
  year: 2019
  end-page: 64836
  ident: b36
  article-title: Local learning with deep and handcrafted features for facial expression recognition
  publication-title: IEEE Access
– volume: 47
  start-page: 4014
  year: 2016
  end-page: 4024
  ident: b5
  article-title: Deep multimodal distance metric learning using click constraints for image ranking
  publication-title: IEEE Trans. Cybern.
– start-page: 3359
  year: 2018
  end-page: 3368
  ident: b38
  article-title: Joint pose and expression modeling for facial expression recognition
  publication-title: IEEE Conf. Computer Vision and Pattern Recognition
– start-page: 1
  year: 2013
  ident: 10.1016/j.image.2021.116321_b55
  article-title: Local learning to improve bag of visual words model for facial expression recognition
– volume: 31
  start-page: 131
  issue: 3
  year: 2000
  ident: 10.1016/j.image.2021.116321_b20
  article-title: And classification of action units in facial expression
  publication-title: J. Robot. Auton. Syst.
  doi: 10.1016/S0921-8890(99)00103-7
– volume: 48
  start-page: 384
  issue: 4
  year: 1993
  ident: 10.1016/j.image.2021.116321_b7
  article-title: Facial expression and emotion
  publication-title: Amer. Psychol.
  doi: 10.1037/0003-066X.48.4.384
– start-page: 3642
  year: 2012
  ident: 10.1016/j.image.2021.116321_b46
  article-title: Multi-column deep neural networks for image classification
– volume: 161
  start-page: 74
  year: 2019
  ident: 10.1016/j.image.2021.116321_b18
  article-title: FERLrTc: 2D+ 3D facial expression recognition via low-rank tensor completion
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2019.03.015
– start-page: 558
  year: 2017
  ident: 10.1016/j.image.2021.116321_b43
  article-title: Identity-aware convolutional neural network for facial expression recognition
– volume: 27
  start-page: 803
  issue: 6
  year: 2009
  ident: 10.1016/j.image.2021.116321_b9
  article-title: Facial expression recognition based on local binary patterns: A comprehensive study
  publication-title: Image Vis. Comput.
  doi: 10.1016/j.imavis.2008.08.005
– volume: 23
  start-page: 2019
  issue: 5
  year: 2014
  ident: 10.1016/j.image.2021.116321_b3
  article-title: Click prediction for web image reranking using multimodal sparse coding
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2014.2311377
– start-page: 1805
  year: 2014
  ident: 10.1016/j.image.2021.116321_b8
  article-title: Facial expression recognition via a boosted deep belief network
– year: 2011
  ident: 10.1016/j.image.2021.116321_b24
– start-page: 1
  year: 2016
  ident: 10.1016/j.image.2021.116321_b58
  article-title: Deep neural networks with relativity learning for facial expression recognition
– ident: 10.1016/j.image.2021.116321_b22
  doi: 10.1109/CVPR.2016.602
– start-page: 1
  year: 2017
  ident: 10.1016/j.image.2021.116321_b1
  article-title: Facial expression recognition for human–robot interaction
– start-page: 302
  year: 2018
  ident: 10.1016/j.image.2021.116321_b40
  article-title: Island loss for learning discriminative features in facial expression recognition
– volume: 21
  start-page: 3262
  issue: 7
  year: 2012
  ident: 10.1016/j.image.2021.116321_b4
  article-title: Adaptive hypergraph learning and its application in image classification
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2012.2190083
– start-page: 94
  year: 2010
  ident: 10.1016/j.image.2021.116321_b47
  article-title: The extended cohn-kanade dataset (ck+): A complete dataset for action unit and emotion-specified expression
– volume: 117
  start-page: 1
  year: 2015
  ident: 10.1016/j.image.2021.116321_b10
  article-title: Facial expression recognition based on improved local binary pattern and class-regularized locality preserving projection
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2015.04.007
– year: 2018
  ident: 10.1016/j.image.2021.116321_b60
– start-page: 163
  year: 2016
  ident: 10.1016/j.image.2021.116321_b57
  article-title: Facial expression recognition with CNN ensemble
– start-page: 790
  year: 2017
  ident: 10.1016/j.image.2021.116321_b23
  article-title: Spatio-temporal facial expression recognition using convolutional neural networks and conditional random fields
– start-page: 98
  year: 2014
  ident: 10.1016/j.image.2021.116321_b56
  article-title: Multi-task learning of facial landmarks and expression
– volume: 9
  start-page: 597
  issue: 5
  year: 2017
  ident: 10.1016/j.image.2021.116321_b59
  article-title: Ensemble of deep neural networks with probability-based fusion for facial expression recognition
  publication-title: Cogn. Comput.
  doi: 10.1007/s12559-017-9472-6
– volume: 7
  start-page: 41273
  year: 2019
  ident: 10.1016/j.image.2021.116321_b34
  article-title: Efficient facial expression recognition algorithm based on hierarchical deep neural network structure
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2907327
– ident: 10.1016/j.image.2021.116321_b48
– volume: 77
  start-page: 1133
  issue: 1
  year: 2018
  ident: 10.1016/j.image.2021.116321_b14
  article-title: Reliable facial expression recognition for multi-scale images using weber local binary image based cosine transform features
  publication-title: Multimedia Tools Appl.
  doi: 10.1007/s11042-016-4324-z
– volume: 6
  start-page: 1
  issue: 1
  year: 2015
  ident: 10.1016/j.image.2021.116321_b12
  article-title: Automatic facial expression recognition using features of salient facial patches
  publication-title: IEEE Trans. Affect. Comput.
  doi: 10.1109/TAFFC.2014.2386334
– volume: 29
  start-page: 4057
  year: 2020
  ident: 10.1016/j.image.2021.116321_b42
  article-title: Region attention networks for pose and occlusion robust facial expression recognition
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2019.2956143
– start-page: 1
  year: 2019
  ident: 10.1016/j.image.2021.116321_b33
– ident: 10.1016/j.image.2021.116321_b21
  doi: 10.1109/ICCV.2003.1238640
– volume: 10
  start-page: 534
  issue: 7
  year: 2016
  ident: 10.1016/j.image.2021.116321_b54
  article-title: Spatiotemporal feature extraction for facial expression recognition
  publication-title: IET Image Process.
  doi: 10.1049/iet-ipr.2015.0519
– year: 2018
  ident: 10.1016/j.image.2021.116321_b13
– start-page: 1
  year: 2019
  ident: 10.1016/j.image.2021.116321_b35
– volume: 27
  start-page: 131
  issue: 1
  year: 2016
  ident: 10.1016/j.image.2021.116321_b51
  article-title: A new facial expression recognition based on curvelet transform and online sequential extreme learning machine initialized with spherical clustering
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-014-1569-1
– volume: 93
  start-page: 1547
  issue: 6
  year: 2013
  ident: 10.1016/j.image.2021.116321_b11
  article-title: Intelligent pixels of interest selection with application to facial expression recognition using multilayer perceptron
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2012.08.007
– volume: 29
  start-page: 915
  issue: 6
  year: 2007
  ident: 10.1016/j.image.2021.116321_b32
  article-title: Dynamic texture recognition using local binary patterns with an application to facial expressions
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2007.1110
– volume: 23
  start-page: 1499
  issue: 10
  year: 2016
  ident: 10.1016/j.image.2021.116321_b44
  article-title: Joint face detection and alignment using multitask cascaded convolutional networks
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2016.2603342
– start-page: 577
  year: 2017
  ident: 10.1016/j.image.2021.116321_b52
  article-title: Automated facial expression recognition app development on smart phones using cloud computing
– volume: 8
  start-page: 98
  issue: 1
  year: 1997
  ident: 10.1016/j.image.2021.116321_b27
  article-title: Face recognition: a convolutional neural-network approach
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.554195
– ident: 10.1016/j.image.2021.116321_b29
  doi: 10.1109/CVPR.2014.233
– year: 2013
  ident: 10.1016/j.image.2021.116321_b49
– volume: 28
  start-page: 2439
  issue: 5
  year: 2018
  ident: 10.1016/j.image.2021.116321_b41
  article-title: Occlusion aware facial expression recognition using CNN with attention mechanism
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2018.2886767
– volume: 1
  start-page: 4700
  issue: 2
  year: 2017
  ident: 10.1016/j.image.2021.116321_b17
  article-title: Densely connected convolutional networks
  publication-title: IEEE Conf. Computer Vision and Pattern Recognition
– start-page: 2168
  year: 2018
  ident: 10.1016/j.image.2021.116321_b37
  article-title: Facial expression recognition by de-expression residue learning
– volume: 5
  start-page: 10871
  year: 2017
  ident: 10.1016/j.image.2021.116321_b2
  article-title: A facial-expression monitoring system for improved healthcare in smart cities
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2712788
– volume: 6
  start-page: 3249
  issue: 3
  year: 2015
  ident: 10.1016/j.image.2021.116321_b28
  article-title: Facial expression recognition using neural network
  publication-title: Int. J. Comput. Sci. Inf. Technol.
– start-page: 1
  year: 2007
  ident: 10.1016/j.image.2021.116321_b25
  article-title: Boosting coded dynamic features for facial action units and facial expression recognition
– volume: 7
  start-page: 64827
  year: 2019
  ident: 10.1016/j.image.2021.116321_b36
  article-title: Local learning with deep and handcrafted features for facial expression recognition
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2917266
– volume: 5
  start-page: 97
  issue: 12
  year: 2014
  ident: 10.1016/j.image.2021.116321_b19
  article-title: Facial expression recognition using 3D convolutional neural network
  publication-title: Int. J. Adv. Comput. Sci. Appl.
– year: 2008
  ident: 10.1016/j.image.2021.116321_b31
  article-title: A spatio-temporal descriptor based on 3d-gradients
– start-page: 273
  year: 2015
  ident: 10.1016/j.image.2021.116321_b45
  article-title: A facial expression recognition system using convolutional network
– start-page: 454
  year: 1998
  ident: 10.1016/j.image.2021.116321_b26
  article-title: Comparison between geometry-based and gabor-wavelets-based facial expression recognition using multi-layer perceptron
– volume: 10
  start-page: 173
  issue: 2
  year: 2016
  ident: 10.1016/j.image.2021.116321_b30
  article-title: Hierarchical committee of deep convolutional neural networks for robust facial expression recognition
  publication-title: J. Multimodal User Interfaces
  doi: 10.1007/s12193-015-0209-0
– volume: 26
  start-page: 6006
  issue: 12
  year: 2017
  ident: 10.1016/j.image.2021.116321_b53
  article-title: Local directional ternary pattern for facial expression recognition
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2017.2726010
– start-page: 3359
  year: 2018
  ident: 10.1016/j.image.2021.116321_b38
  article-title: Joint pose and expression modeling for facial expression recognition
– volume: 47
  start-page: 4014
  issue: 12
  year: 2016
  ident: 10.1016/j.image.2021.116321_b5
  article-title: Deep multimodal distance metric learning using click constraints for image ranking
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2016.2591583
– start-page: 143
  year: 2014
  ident: 10.1016/j.image.2021.116321_b15
  article-title: Deeply learning deformable facial action parts model for dynamic expression analysis
– volume: 267
  start-page: 385
  year: 2017
  ident: 10.1016/j.image.2021.116321_b16
  article-title: An efficient unconstrained facial expression recognition algorithm based on stack binarized auto-encoders and binarized neural networks
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.06.050
– volume: 45
  start-page: 767
  issue: 4
  year: 2014
  ident: 10.1016/j.image.2021.116321_b6
  article-title: Learning to rank using user clicks and visual features for image retrieval
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2014.2336697
– volume: 74
  start-page: 1
  year: 2019
  ident: 10.1016/j.image.2021.116321_b39
  article-title: Facial expression recognition with local prominent directional pattern
  publication-title: Signal Process., Image Commun.
  doi: 10.1016/j.image.2019.01.002
– start-page: 1
  year: 2003
  ident: 10.1016/j.image.2021.116321_b50
  article-title: Simultaneous feature selection and classifier training via linear programming: A case study for face expression recognition
SSID ssj0002409
Score 2.3594775
Snippet Automatic facial expression recognition (FER) is an important technique in human–computer interfaces and surveillance systems. It classifies the input facial...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 116321
SubjectTerms Algorithms
Artificial neural networks
Background noise
Classifiers
Computer vision
Convolutional neural network
Deep learning
Face frontalization
Face recognition
Facial expression
Hierarchical structure
Machine learning
Recognition
Surveillance systems
Title Frontalization and adaptive exponential ensemble rule for deep-learning-based facial expression recognition system
URI https://dx.doi.org/10.1016/j.image.2021.116321
https://www.proquest.com/docview/2549056500
Volume 96
WOSCitedRecordID wos000657392200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-2677
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002409
  issn: 0923-5965
  databaseCode: AIEXJ
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWlgMceBQQhYJ84AZexUmcxMeqakX3UCFRxO4pcmynpNqGaB_V_h3-KePYzqa7sKIHLlFkOZaT-TLzeTQPhD4Aq80KlhjPvYxJrJkkvCwZCZjKgqJIqZZl22wivbjIxmP-ZTD45XNhbqdpXWerFW_-q6hhDIRtUmfvIe5uURiAexA6XEHscP0nwZ-ZkgRi6vIrbTFWJZo2REivmp-1iQ8CwcD5Vd-YvKnZcmorfyutG-LaSFwRY9-U6cfTTl65gFmT_eJCjuDe1oHuE9yv1ZXht43NPzBdGT6e35i4INnPROn8BXPXDVtUZLIUW-OTinzX1UbQ0KT6QU4Aas7mGhbuGrOMAOtkVC3rvi8jpF0kXeeUDCPCuO0e4fUz7ytYCvzRplRv6X7rhrgeVuathmb54Xr23UrbGxawi0v0IW_XebtIbhbJ7SIP0H6YMg66f__4_HQ86sw9UCJb0NFt3Ze2aoMIt_byN_qzQQRadnP5DD1xxxJ8bOH0HA10fYCeuiMKdgZgDkO-C4gfO0CPeyUtX6DZXfhhgB_28MM9-GEPP2zghwF--A_wwxZ-eA0_3IMftvB7ib6dnV6efCaurweRUUQXJBFg7Uuh2wMqoyoEnZCqSMdhUGSZBMookkALHfOYFWAhYJdcJKUspU7TQNDoFdqrYbuvEY4pTUtaZGEmi1jRgCvKmYpSyVlcZIoeotB_7ly6ovem98o03yHqQ_Spe6ixNV92T0-8HHNHWy0dzQGZux888lLPnQKZ58ZhA4cSFgRv7reNt-jR-pc6QnuL2VK_Qw_l7aKaz9471P4G7izJAg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Frontalization+and+adaptive+exponential+ensemble+rule+for+deep-learning-based+facial+expression+recognition+system&rft.jtitle=Signal+processing.+Image+communication&rft.au=Tsai%2C+Kai-Yuan&rft.au=Tsai%2C+Yi-Wei&rft.au=Lee%2C+Yih-Cherng&rft.au=Ding%2C+Jian-Jiun&rft.date=2021-08-01&rft.issn=0923-5965&rft.volume=96&rft.spage=116321&rft_id=info:doi/10.1016%2Fj.image.2021.116321&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_image_2021_116321
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0923-5965&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0923-5965&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0923-5965&client=summon