Frontalization and adaptive exponential ensemble rule for deep-learning-based facial expression recognition system

Automatic facial expression recognition (FER) is an important technique in human–computer interfaces and surveillance systems. It classifies the input facial image into one of the basic expressions (anger, sadness, surprise, happiness, disgust, fear, and neutral). There are two types of FER algorith...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Signal processing. Image communication Ročník 96; s. 116321
Hlavní autoři: Tsai, Kai-Yuan, Tsai, Yi-Wei, Lee, Yih-Cherng, Ding, Jian-Jiun, Chang, Ronald Y.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Amsterdam Elsevier B.V 01.08.2021
Elsevier BV
Témata:
ISSN:0923-5965, 1879-2677
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Automatic facial expression recognition (FER) is an important technique in human–computer interfaces and surveillance systems. It classifies the input facial image into one of the basic expressions (anger, sadness, surprise, happiness, disgust, fear, and neutral). There are two types of FER algorithms: feature-based and convolutional neural network (CNN)-based algorithms. The CNN is a powerful classifier, however, without proper auxiliary techniques, its performance may be limited. In this study, we improve the CNN-based FER system by utilizing face frontalization and the hierarchical architecture. The frontalization algorithm aligns the face by in-plane or out-of-plane, rotation, landmark point matching, and removing background noise. The proposed adaptive exponentially weighted average ensemble rule can determine the optimal weight according to the accuracy of classifiers to improve robustness. Experiments on several popular databases are performed and the results show that the proposed system has a very high accuracy and outperforms state-of-the-art FER systems. [Display omitted] •An advanced CNN based facial expression recognition (FER) method is proposed.•Its accuracy is higher than that of other stated-of-the-art CNN-based methods.•Advanced frontalization method is used to make the input of the CNN more meaningful.•A hierarchical AEWEA system is applied to integrate the advantages of each model.•The shortcut CNN, which considers block relations and is easier to train, is adopted.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0923-5965
1879-2677
DOI:10.1016/j.image.2021.116321