Return mapping algorithm in principal space for general isotropic elastoplasticity involving multi-surface plasticity and combined isotropic-kinematic hardening within finite deformation framework

The compatibility with complicated elastoplasticity and efficiency of the constitutive integration algorithm both significantly influence the performance of finite element analysis for engineering practical problems. In this work, a numerical integration algorithm in principal space is proposed for...

Full description

Saved in:
Bibliographic Details
Published in:Finite elements in analysis and design Vol. 150; pp. 1 - 19
Main Authors: Meng, Chunyu, Tang, Zhengjun, Chen, Mingxiang, Peng, Qi
Format: Journal Article
Language:English
Published: Amsterdam Elsevier B.V 01.10.2018
Elsevier BV
Subjects:
ISSN:0168-874X, 1872-6925
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The compatibility with complicated elastoplasticity and efficiency of the constitutive integration algorithm both significantly influence the performance of finite element analysis for engineering practical problems. In this work, a numerical integration algorithm in principal space is proposed for general isotropic elastoplastic constitutive models that involve multi-surface plasticity with corners in the yield surface and combined isotropic-kinematic hardening law as well as nonlinear elasticity within the framework of finite deformation. For the multi-surface plasticity, a strategy, which uses the mid-direction of two plastic flow directions at a corner as the border of critical regions, is proposed to predict the yield functions activated in the return mapping iterations, making the prediction procedure simpler. By making use of the relative stress, the combined isotropic-kinematic hardening law is incorporated into the numerical integration algorithm in principal space. The consistent tangent operator is also derived. Besides, the fully implicit return mapping algorithm based on representation theorem is employed. The expressions of the first and second derivatives of yield/potential function, which are frequently evaluated in the algorithm, maintain a simple form and reduce the computational cost. Solution of finite element practical problems demonstrates that compatibility and efficiency of the constitutive integration algorithm are improved while accuracy is retained. •A numerical integration algorithm in principal space is proposed for general isotropic elastoplastic constitutive models.•A simpler strategy for predicting multi yield surface activation in the return mapping iterations is proposed.•Combined isotropic-kinematic hardening is incorporated into principal space algorithm along with multi-surface plasticity.•Compatibility and efficiency of the constitutive integration algorithm are improved while accuracy is retained.
AbstractList The compatibility with complicated elastoplasticity and efficiency of the constitutive integration algorithm both significantly influence the performance of finite element analysis for engineering practical problems. In this work, a numerical integration algorithm in principal space is proposed for general isotropic elastoplastic constitutive models that involve multi-surface plasticity with corners in the yield surface and combined isotropic-kinematic hardening law as well as nonlinear elasticity within the framework of finite deformation. For the multi-surface plasticity, a strategy, which uses the mid-direction of two plastic flow directions at a corner as the border of critical regions, is proposed to predict the yield functions activated in the return mapping iterations, making the prediction procedure simpler. By making use of the relative stress, the combined isotropic-kinematic hardening law is incorporated into the numerical integration algorithm in principal space. The consistent tangent operator is also derived. Besides, the fully implicit return mapping algorithm based on representation theorem is employed. The expressions of the first and second derivatives of yield/potential function, which are frequently evaluated in the algorithm, maintain a simple form and reduce the computational cost. Solution of finite element practical problems demonstrates that compatibility and efficiency of the constitutive integration algorithm are improved while accuracy is retained.
The compatibility with complicated elastoplasticity and efficiency of the constitutive integration algorithm both significantly influence the performance of finite element analysis for engineering practical problems. In this work, a numerical integration algorithm in principal space is proposed for general isotropic elastoplastic constitutive models that involve multi-surface plasticity with corners in the yield surface and combined isotropic-kinematic hardening law as well as nonlinear elasticity within the framework of finite deformation. For the multi-surface plasticity, a strategy, which uses the mid-direction of two plastic flow directions at a corner as the border of critical regions, is proposed to predict the yield functions activated in the return mapping iterations, making the prediction procedure simpler. By making use of the relative stress, the combined isotropic-kinematic hardening law is incorporated into the numerical integration algorithm in principal space. The consistent tangent operator is also derived. Besides, the fully implicit return mapping algorithm based on representation theorem is employed. The expressions of the first and second derivatives of yield/potential function, which are frequently evaluated in the algorithm, maintain a simple form and reduce the computational cost. Solution of finite element practical problems demonstrates that compatibility and efficiency of the constitutive integration algorithm are improved while accuracy is retained. •A numerical integration algorithm in principal space is proposed for general isotropic elastoplastic constitutive models.•A simpler strategy for predicting multi yield surface activation in the return mapping iterations is proposed.•Combined isotropic-kinematic hardening is incorporated into principal space algorithm along with multi-surface plasticity.•Compatibility and efficiency of the constitutive integration algorithm are improved while accuracy is retained.
Author Peng, Qi
Chen, Mingxiang
Tang, Zhengjun
Meng, Chunyu
Author_xml – sequence: 1
  givenname: Chunyu
  surname: Meng
  fullname: Meng, Chunyu
– sequence: 2
  givenname: Zhengjun
  surname: Tang
  fullname: Tang, Zhengjun
– sequence: 3
  givenname: Mingxiang
  surname: Chen
  fullname: Chen, Mingxiang
– sequence: 4
  givenname: Qi
  surname: Peng
  fullname: Peng, Qi
  email: pearqiqi@whu.edu.cn
BookMark eNqFkUFrFTEUhYNU8LX6C9wEXM-YzGTmZRYupGgVCkJRcBcyyc1rXmeSMcl7pf_PH9Y7fYLiQjcJCec7OTfnnJyFGICQ15zVnPH-7b52PsBUN4zLmm1rxvgzsuFy21T90HRnZIMqWcmt-P6CnOe8Z4x1TS825OcNlEMKdNbL4sOO6mkXky-3M_WBLskH4xc90bxoA9TFRHcQIOGNz7GkuHhDYdK5xGVdvfHlAcljnI6r23yYiq_yIbkV_0Oig6UmziOmtr-tqjs8zxo19FYnC2H1uMc0mAUH9AWoBQyxSiJeJT3DfUx3L8lzp6cMr37tF-Tbxw9fLz9V11-uPl--v65M2_JSdbYztm3M6AZtR22k6LjspOWjEE6OPe9d35mudVw2TjjQ1rBRjGZoWWd1O7QX5M3Jd0nxxwFyUfuIn4dPqobzXjDBZIuq4aQyKeacwCkc-SlxSdpPijO1lqb26qk0tZam2FZhaci2f7HYwazTw3-odycKcPijh6Sy8RAMWJ_AFGWj_yf_CArivLw
CitedBy_id crossref_primary_10_1016_j_finel_2024_104310
crossref_primary_10_1016_j_compstruc_2021_106652
crossref_primary_10_1007_s10338_022_00325_4
crossref_primary_10_1016_j_advengsoft_2021_103067
crossref_primary_10_3390_app11104637
crossref_primary_10_1016_j_finel_2021_103531
crossref_primary_10_1007_s11340_021_00709_6
crossref_primary_10_1016_j_apm_2021_11_003
crossref_primary_10_1016_j_euromechsol_2022_104775
Cites_doi 10.1002/nag.179
10.1090/qam/59769
10.1016/j.compstruc.2007.04.002
10.1002/nag.231
10.1016/j.compstruc.2006.10.001
10.1002/zamm.19950750410
10.1016/j.compstruc.2011.11.006
10.1061/(ASCE)0733-9399(1990)116:8(1764)
10.1002/nag.2244
10.1002/nme.970
10.1063/1.1708953
10.1016/S0020-7683(03)00155-0
10.1016/S0022-5096(00)00023-5
ContentType Journal Article
Copyright 2018 Elsevier B.V.
Copyright Elsevier BV Oct 1, 2018
Copyright_xml – notice: 2018 Elsevier B.V.
– notice: Copyright Elsevier BV Oct 1, 2018
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1016/j.finel.2018.07.001
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1872-6925
EndPage 19
ExternalDocumentID 10_1016_j_finel_2018_07_001
S0168874X1730923X
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABAOU
ABBOA
ABMAC
ABYKQ
ACAZW
ACDAQ
ACGFS
ACIWK
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
JJJVA
KOM
LX9
LY7
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SST
SSV
SSW
SSZ
T5K
TN5
XPP
ZMT
~02
~G-
29H
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABJNI
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
SEW
T9H
VH1
WUQ
~HD
7SC
7TB
8FD
AFXIZ
AGCQF
AGRNS
FR3
JQ2
KR7
L7M
L~C
L~D
SSH
ID FETCH-LOGICAL-c331t-5d5cd32cbf9adbac8451858d1b44f8b616f65c53f182f4feadc0b4bc9305da393
ISICitedReferencesCount 9
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000442888600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0168-874X
IngestDate Fri Jul 25 07:39:09 EDT 2025
Sat Nov 29 04:56:32 EST 2025
Tue Nov 18 22:31:02 EST 2025
Fri Feb 23 02:34:33 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Combined hardening
Representation theorem
Finite strain elastoplasticity
Multi-surface plasticity
Return mapping algorithm
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c331t-5d5cd32cbf9adbac8451858d1b44f8b616f65c53f182f4feadc0b4bc9305da393
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2116404083
PQPubID 2045476
PageCount 19
ParticipantIDs proquest_journals_2116404083
crossref_citationtrail_10_1016_j_finel_2018_07_001
crossref_primary_10_1016_j_finel_2018_07_001
elsevier_sciencedirect_doi_10_1016_j_finel_2018_07_001
PublicationCentury 2000
PublicationDate 2018-10-01
2018-10-00
20181001
PublicationDateYYYYMMDD 2018-10-01
PublicationDate_xml – month: 10
  year: 2018
  text: 2018-10-01
  day: 01
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Finite elements in analysis and design
PublicationYear 2018
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Simo, Hughes (bib1) 1998
Foster, Regueiro, Fossum, Borja (bib20) 2005; 194
Crisfield (bib16) 1997; vol. 2
Huang, Peng, Chen (bib23) 2014; 38
Palazzo, Rosati, Valoroso (bib21) 2001; 191
Crisfield (bib4) 1997; vol. 2
Rorja, Sama, Sanz (bib10) 2003; 192
Zheng, Betten (bib25) 2015; 75
Ben-Israel, Greville (bib31) 2003
Simo (bib2) 1998; 6
Clausen, Damkilde, Andersen (bib17) 2007; 85
Rouainia, Wood (bib6) 2001; 25
Zheng (bib24) 1994; 47
Rosati, Valoroso (bib19) 2004; 60
Lee, Liu (bib27) 1967; 38
Tamagnini, Castellanza, Nova (bib9) 2002; 26
Simo, Ortiz (bib11) 1985; 49
Alfano, Rosati, Valoroso (bib8) 1998
Khoei, Bakhshiani, Mofid (bib7) 2003; 40
Larsson, Runesson (bib18) 2015; 1
Criscione, Humphrey, Douglas, Hunte (bib26) 2000; 4
Koiter (bib29) 1953; 11
Simo (bib12) 1992
Lee (bib28) 1969; 36
Koiter (bib3) 1953; 11
Simo, Taylor (bib14) 1985; 48
Ju (bib13) 1990; 116
Wilkins (bib15) 1964; vol. 3
Dolarevic, Ibrahimbegovic (bib30) 2007; 85
Peng, Chen (bib22) 2012; 92–93
Peric, Neto (bib5) 1999; 171
Koiter (10.1016/j.finel.2018.07.001_bib29) 1953; 11
Rosati (10.1016/j.finel.2018.07.001_bib19) 2004; 60
Simo (10.1016/j.finel.2018.07.001_bib14) 1985; 48
Koiter (10.1016/j.finel.2018.07.001_bib3) 1953; 11
Dolarevic (10.1016/j.finel.2018.07.001_bib30) 2007; 85
Alfano (10.1016/j.finel.2018.07.001_bib8) 1998
Zheng (10.1016/j.finel.2018.07.001_bib25) 2015; 75
Tamagnini (10.1016/j.finel.2018.07.001_bib9) 2002; 26
Peng (10.1016/j.finel.2018.07.001_bib22) 2012; 92–93
Rouainia (10.1016/j.finel.2018.07.001_bib6) 2001; 25
Rorja (10.1016/j.finel.2018.07.001_bib10) 2003; 192
Huang (10.1016/j.finel.2018.07.001_bib23) 2014; 38
Ben-Israel (10.1016/j.finel.2018.07.001_bib31) 2003
Criscione (10.1016/j.finel.2018.07.001_bib26) 2000; 4
Crisfield (10.1016/j.finel.2018.07.001_bib16) 1997; vol. 2
Ju (10.1016/j.finel.2018.07.001_bib13) 1990; 116
Wilkins (10.1016/j.finel.2018.07.001_bib15) 1964; vol. 3
Palazzo (10.1016/j.finel.2018.07.001_bib21) 2001; 191
Zheng (10.1016/j.finel.2018.07.001_bib24) 1994; 47
Clausen (10.1016/j.finel.2018.07.001_bib17) 2007; 85
Lee (10.1016/j.finel.2018.07.001_bib27) 1967; 38
Lee (10.1016/j.finel.2018.07.001_bib28) 1969; 36
Simo (10.1016/j.finel.2018.07.001_bib12) 1992
Larsson (10.1016/j.finel.2018.07.001_bib18) 2015; 1
Crisfield (10.1016/j.finel.2018.07.001_bib4) 1997; vol. 2
Simo (10.1016/j.finel.2018.07.001_bib11) 1985; 49
Simo (10.1016/j.finel.2018.07.001_bib1) 1998
Simo (10.1016/j.finel.2018.07.001_bib2) 1998; 6
Khoei (10.1016/j.finel.2018.07.001_bib7) 2003; 40
Foster (10.1016/j.finel.2018.07.001_bib20) 2005; 194
Peric (10.1016/j.finel.2018.07.001_bib5) 1999; 171
References_xml – year: 1998
  ident: bib8
  article-title: Closed-form evaluation of the consistent tangent operator for isotropic yield criteria of arbitrary type
  publication-title: Proceedings of IV World Congress of Computational Mechanics, Buenos Aires
– volume: 26
  start-page: 963
  year: 2002
  end-page: 1004
  ident: bib9
  article-title: A generalized backward euler algorithm for the numerical integration of an isotropic hardening elastoplastic model for mechanical and chemical degradation of bonded geomaterials
  publication-title: Int. J. Numer. Anal. Meth.
– volume: 36
  start-page: 1
  year: 1969
  end-page: 6
  ident: bib28
  article-title: Elastic-plastic deformation at finite strains
  publication-title: J. Appl. Phys.
– volume: 6
  start-page: 183
  year: 1998
  end-page: 499
  ident: bib2
  article-title: Numerical analysis and simulation of plasticity
  publication-title: Handb. Numer. Anal.
– volume: 192
  start-page: 1227
  year: 2003
  end-page: 1258
  ident: bib10
  article-title: On the numerical integration of threeinvariant elastoplastic constitutive models
  publication-title: Comput. Meth. Appl. Math.
– volume: 11
  start-page: 350
  year: 1953
  end-page: 354
  ident: bib3
  article-title: Stress-strain relations, uniqueness and variational theorems for elastic-plastic materials with a singular yield surface
  publication-title: Q. Appl. Math.
– volume: 40
  start-page: 3393
  year: 2003
  end-page: 3423
  ident: bib7
  article-title: An implicit algorithm for hypoelastoplastic and hypoelasto-viscoplastic endochronic theory in finite strain isotropic–kinematic-hardening model
  publication-title: Int. J. Solid Struct.
– volume: 38
  start-page: 19
  year: 1967
  end-page: 27
  ident: bib27
  article-title: Finite strain elastic-plastic theory with application to plane-wave analysis
  publication-title: J. Appl. Phys.
– volume: 92–93
  start-page: 173
  year: 2012
  end-page: 184
  ident: bib22
  article-title: An efficient return mapping algorithm for general isotropic elastoplasticity in principal space
  publication-title: Comput. Struct.
– volume: 171
  start-page: 463
  year: 1999
  end-page: 489
  ident: bib5
  article-title: A new computational model for tresca plasticity at finite strains with an optimal parametrization in the principal space
  publication-title: Comput. Meth. Appl. Math.
– volume: 49
  start-page: 221
  year: 1985
  end-page: 245
  ident: bib11
  article-title: A unified approach to finite deformation elastoplastic analysis based on the use of hyperelastic constitutive equations
  publication-title: Comput. Meth. Appl. Math.
– volume: 48
  start-page: 101
  year: 1985
  end-page: 118
  ident: bib14
  article-title: Consistent tangent operators for rate-independent Elastoplasticity
  publication-title: Comput. Meth. Appl. Math.
– volume: 194
  start-page: 5109
  year: 2005
  end-page: 5138
  ident: bib20
  article-title: Implicit numerical integration of a three-invariant, isotropic/kinematic hardening cap plasticity model for Geomaterials
  publication-title: Comput. Meth. Appl. Math.
– volume: 25
  start-page: 1305
  year: 2001
  end-page: 1325
  ident: bib6
  article-title: Implicit numerical integration for a kinematic hardening soil plasticity model
  publication-title: Int. J. Numer. Anal. Meth.
– volume: vol. 3
  year: 1964
  ident: bib15
  article-title: Calculation of Elastic–plastic Flow
  publication-title: Methods of Computational Physics
– volume: 60
  start-page: 461
  year: 2004
  end-page: 498
  ident: bib19
  article-title: A return map algorithm for general isotropic elasto/visco-plastic materials in principal space
  publication-title: Int. J. Numer. Meth. Eng.
– volume: 11
  start-page: 350
  year: 1953
  end-page: 354
  ident: bib29
  article-title: Stress-strain relations, uniqueness and variational theorems for elastic- plastic materials with a singular yield surface
  publication-title: Q. Appl. Math.
– volume: vol. 2
  year: 1997
  ident: bib4
  publication-title: Non-linear Finite Element Analysis of Solids and Structures: Advanced Topics
– volume: vol. 2
  year: 1997
  ident: bib16
  article-title: Non-linear Finite Element Analysis of Solids and Structures
  publication-title: Advanced Topics
– volume: 4
  start-page: 2445
  year: 2000
  end-page: 2465
  ident: bib26
  article-title: An invariant basis for natural strain which yields orthogonal stress response terms in isotropic hyperelasticity
  publication-title: J. Mech. Phys. Solid.
– volume: 1
  start-page: 367
  year: 2015
  end-page: 383
  ident: bib18
  article-title: Implicit integration and consistent linearization for yield criteria of the mohr–coulomb type
  publication-title: Int. J. Numer. Anal. Meth.
– year: 1998
  ident: bib1
  article-title: Computational Inelasticity
– volume: 85
  start-page: 419
  year: 2007
  end-page: 430
  ident: bib30
  article-title: A modified three-surface elasto-plastic cap model and its numerical implementation
  publication-title: Comput. Struct.
– year: 2003
  ident: bib31
  article-title: Generalized Inverses: Theory and Applications
– volume: 38
  start-page: 636
  year: 2014
  end-page: 660
  ident: bib23
  article-title: An improved return-map stress update algorithm for finite deformation analysis of general isotropic elastoplastic geomaterials
  publication-title: Int. J. Numer. Anal. Meth.
– volume: 75
  start-page: 269
  year: 2015
  end-page: 281
  ident: bib25
  article-title: On the tensor function representations of 2nd-order and 4th-order tensors(Part I)
  publication-title: ZAMM - J. Appl. Math. Mech.
– volume: 85
  start-page: 1795
  year: 2007
  end-page: 1807
  ident: bib17
  article-title: An efficient return algorithm for nonassociated plasticity with linear yield criteria in principal stress space
  publication-title: Comput. Struct.
– year: 1992
  ident: bib12
  article-title: Algorithms for Static and Dynamic Multiplicative Plasticity that Preserve the Classical Return Mapping Schemes of the Infinitesimal Theory
– volume: 116
  start-page: 1764
  year: 1990
  end-page: 1779
  ident: bib13
  article-title: Consistent tangent moduli for a class of viscoplasticity
  publication-title: J. Eng. Mech.
– volume: 191
  start-page: 903
  year: 2001
  end-page: 939
  ident: bib21
  article-title: Solution procedures for J3, plasticity and Viscoplasticity
  publication-title: Comput. Meth. Appl. Math.
– volume: 47
  start-page: 545
  year: 1994
  ident: bib24
  article-title: Theory of representations for tensor functions-a unified invariant approach to constitutive equations
  publication-title: Agron. J.
– volume: 1
  start-page: 367
  issue: 4
  year: 2015
  ident: 10.1016/j.finel.2018.07.001_bib18
  article-title: Implicit integration and consistent linearization for yield criteria of the mohr–coulomb type
  publication-title: Int. J. Numer. Anal. Meth.
– volume: 25
  start-page: 1305
  issue: 13
  year: 2001
  ident: 10.1016/j.finel.2018.07.001_bib6
  article-title: Implicit numerical integration for a kinematic hardening soil plasticity model
  publication-title: Int. J. Numer. Anal. Meth.
  doi: 10.1002/nag.179
– year: 1998
  ident: 10.1016/j.finel.2018.07.001_bib1
– volume: 11
  start-page: 350
  issue: 3
  year: 1953
  ident: 10.1016/j.finel.2018.07.001_bib29
  article-title: Stress-strain relations, uniqueness and variational theorems for elastic- plastic materials with a singular yield surface
  publication-title: Q. Appl. Math.
  doi: 10.1090/qam/59769
– volume: 48
  start-page: 101
  issue: 1
  year: 1985
  ident: 10.1016/j.finel.2018.07.001_bib14
  article-title: Consistent tangent operators for rate-independent Elastoplasticity
  publication-title: Comput. Meth. Appl. Math.
– volume: 192
  start-page: 1227
  issue: 9–10
  year: 2003
  ident: 10.1016/j.finel.2018.07.001_bib10
  article-title: On the numerical integration of threeinvariant elastoplastic constitutive models
  publication-title: Comput. Meth. Appl. Math.
– volume: 85
  start-page: 1795
  issue: 23–24
  year: 2007
  ident: 10.1016/j.finel.2018.07.001_bib17
  article-title: An efficient return algorithm for nonassociated plasticity with linear yield criteria in principal stress space
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2007.04.002
– volume: 191
  start-page: 903
  issue: 8–10
  year: 2001
  ident: 10.1016/j.finel.2018.07.001_bib21
  article-title: Solution procedures for J3, plasticity and Viscoplasticity
  publication-title: Comput. Meth. Appl. Math.
– volume: vol. 2
  year: 1997
  ident: 10.1016/j.finel.2018.07.001_bib4
– volume: 26
  start-page: 963
  issue: 10
  year: 2002
  ident: 10.1016/j.finel.2018.07.001_bib9
  article-title: A generalized backward euler algorithm for the numerical integration of an isotropic hardening elastoplastic model for mechanical and chemical degradation of bonded geomaterials
  publication-title: Int. J. Numer. Anal. Meth.
  doi: 10.1002/nag.231
– volume: 47
  start-page: 545
  issue: 11
  year: 1994
  ident: 10.1016/j.finel.2018.07.001_bib24
  article-title: Theory of representations for tensor functions-a unified invariant approach to constitutive equations
  publication-title: Agron. J.
– volume: 85
  start-page: 419
  issue: 7
  year: 2007
  ident: 10.1016/j.finel.2018.07.001_bib30
  article-title: A modified three-surface elasto-plastic cap model and its numerical implementation
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2006.10.001
– volume: 36
  start-page: 1
  issue: 1
  year: 1969
  ident: 10.1016/j.finel.2018.07.001_bib28
  article-title: Elastic-plastic deformation at finite strains
  publication-title: J. Appl. Phys.
– volume: 75
  start-page: 269
  year: 2015
  ident: 10.1016/j.finel.2018.07.001_bib25
  article-title: On the tensor function representations of 2nd-order and 4th-order tensors(Part I)
  publication-title: ZAMM - J. Appl. Math. Mech.
  doi: 10.1002/zamm.19950750410
– volume: 6
  start-page: 183
  issue: 6
  year: 1998
  ident: 10.1016/j.finel.2018.07.001_bib2
  article-title: Numerical analysis and simulation of plasticity
  publication-title: Handb. Numer. Anal.
– volume: 171
  start-page: 463
  issue: 3
  year: 1999
  ident: 10.1016/j.finel.2018.07.001_bib5
  article-title: A new computational model for tresca plasticity at finite strains with an optimal parametrization in the principal space
  publication-title: Comput. Meth. Appl. Math.
– volume: 49
  start-page: 221
  issue: 2
  year: 1985
  ident: 10.1016/j.finel.2018.07.001_bib11
  article-title: A unified approach to finite deformation elastoplastic analysis based on the use of hyperelastic constitutive equations
  publication-title: Comput. Meth. Appl. Math.
– volume: 92–93
  start-page: 173
  issue: 3
  year: 2012
  ident: 10.1016/j.finel.2018.07.001_bib22
  article-title: An efficient return mapping algorithm for general isotropic elastoplasticity in principal space
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2011.11.006
– volume: 116
  start-page: 1764
  issue: 8
  year: 1990
  ident: 10.1016/j.finel.2018.07.001_bib13
  article-title: Consistent tangent moduli for a class of viscoplasticity
  publication-title: J. Eng. Mech.
  doi: 10.1061/(ASCE)0733-9399(1990)116:8(1764)
– volume: 11
  start-page: 350
  issue: 3
  year: 1953
  ident: 10.1016/j.finel.2018.07.001_bib3
  article-title: Stress-strain relations, uniqueness and variational theorems for elastic-plastic materials with a singular yield surface
  publication-title: Q. Appl. Math.
  doi: 10.1090/qam/59769
– volume: 194
  start-page: 5109
  issue: 50–52
  year: 2005
  ident: 10.1016/j.finel.2018.07.001_bib20
  article-title: Implicit numerical integration of a three-invariant, isotropic/kinematic hardening cap plasticity model for Geomaterials
  publication-title: Comput. Meth. Appl. Math.
– volume: 38
  start-page: 636
  issue: 6
  year: 2014
  ident: 10.1016/j.finel.2018.07.001_bib23
  article-title: An improved return-map stress update algorithm for finite deformation analysis of general isotropic elastoplastic geomaterials
  publication-title: Int. J. Numer. Anal. Meth.
  doi: 10.1002/nag.2244
– volume: vol. 3
  year: 1964
  ident: 10.1016/j.finel.2018.07.001_bib15
  article-title: Calculation of Elastic–plastic Flow
– volume: 60
  start-page: 461
  issue: 2
  year: 2004
  ident: 10.1016/j.finel.2018.07.001_bib19
  article-title: A return map algorithm for general isotropic elasto/visco-plastic materials in principal space
  publication-title: Int. J. Numer. Meth. Eng.
  doi: 10.1002/nme.970
– volume: 38
  start-page: 19
  issue: 1
  year: 1967
  ident: 10.1016/j.finel.2018.07.001_bib27
  article-title: Finite strain elastic-plastic theory with application to plane-wave analysis
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1708953
– year: 2003
  ident: 10.1016/j.finel.2018.07.001_bib31
– year: 1992
  ident: 10.1016/j.finel.2018.07.001_bib12
– year: 1998
  ident: 10.1016/j.finel.2018.07.001_bib8
  article-title: Closed-form evaluation of the consistent tangent operator for isotropic yield criteria of arbitrary type
– volume: 40
  start-page: 3393
  issue: 13–14
  year: 2003
  ident: 10.1016/j.finel.2018.07.001_bib7
  article-title: An implicit algorithm for hypoelastoplastic and hypoelasto-viscoplastic endochronic theory in finite strain isotropic–kinematic-hardening model
  publication-title: Int. J. Solid Struct.
  doi: 10.1016/S0020-7683(03)00155-0
– volume: vol. 2
  year: 1997
  ident: 10.1016/j.finel.2018.07.001_bib16
  article-title: Non-linear Finite Element Analysis of Solids and Structures
– volume: 4
  start-page: 2445
  issue: 12
  year: 2000
  ident: 10.1016/j.finel.2018.07.001_bib26
  article-title: An invariant basis for natural strain which yields orthogonal stress response terms in isotropic hyperelasticity
  publication-title: J. Mech. Phys. Solid.
  doi: 10.1016/S0022-5096(00)00023-5
SSID ssj0005264
Score 2.2366056
Snippet The compatibility with complicated elastoplasticity and efficiency of the constitutive integration algorithm both significantly influence the performance of...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Algorithms
Combined hardening
Compatibility
Constitutive models
Deformation
Elasticity
Elastoplasticity
Finite element analysis
Finite element method
Finite strain elastoplasticity
Hardening
Kinematics
Mapping
Mathematical analysis
Mathematical models
Multi-surface plasticity
Numerical integration
Operators (mathematics)
Plastic flow
Plastic properties
Representation theorem
Return mapping algorithm
Title Return mapping algorithm in principal space for general isotropic elastoplasticity involving multi-surface plasticity and combined isotropic-kinematic hardening within finite deformation framework
URI https://dx.doi.org/10.1016/j.finel.2018.07.001
https://www.proquest.com/docview/2116404083
Volume 150
WOSCitedRecordID wos000442888600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-6925
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005264
  issn: 0168-874X
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LjtMwFLVKhwUseAyMGBiQF4hNCWoSJ3WWo1ErQEN5qIMqNlHiRyelk4Y2HZX_42P4DK5jx02HoYIFG6tN7MTKPbGPb869Rug593mPUC91GNBfhxAeOAkQe4enwg0oUGjp680mesMhHY-jD63WzzoW5nLWy3O6XkfFfzU1HANjq9DZfzC3vSgcgN9gdCjB7FD-leE_CZhF8s5FUlShUMlsMl9k5flFpRfXrnUVIwJrZZ3ve6ITT3ey5bxczIuMdQQw6nJeqDJjiqVnOQxileeh0h86y9VCquaNKiY8DtbZwGDtpZyv8F8nhVXRXcK6fqEvMlN0t8OFjZ_syFop1qTMA11PaJ17Jd9N6kwq6q58S4OiVLpaRrDKv682fgl99Ms5nJ6ubO0TE5vyDvq1hhdlspkpdIOPWdMt4lIrsDO-Ohuv87npPQ0pDP9aEmqHf5341gzg7rXTivZwTF_BkxHqe5VLq4yv5n5bSbyH7-PB2elpPOqPRy-Kb47a30zpAMxmLzfQntcLItpGe8dv-uO3DTlSaPLQ6y7WGbIqLeJv9_0Ti7rCJyqSNLqH7pjVDT7WqLyPWiLfR3fNSgebeWS5j2430mA-QD80ZLGBLLaQxVmOLWRxBVkMaMEGstjiDF-FLLaQxVuQxY0qAB5cQxZfA1lsIYs1ZLGGLG5AFlvIPkRng_7o5LVjdhdxmO-7pRPwgHHfY6mMEp4mjJIAuCvlbkqIpGnohjIMWOBLWIFLImHEZd2UpCyCGZInfuQfoHY-z8UjhBmXocdDCbyhS3qhTEWgPs9LyggHuucfIq-2VsxM6n21A8wsrjWW07gycaxMHHeVJMQ9RC9to0JnntldPaxhEBvyrElxDCDe3fCoBk1shrFl7LluSGB-p_7j3aefoFubt-8ItcvFSjxFN9llmS0XzwzIfwEsYgAk
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Return+mapping+algorithm+in+principal+space+for+general+isotropic+elastoplasticity+involving+multi-surface+plasticity+and+combined+isotropic-kinematic+hardening+within+finite+deformation+framework&rft.jtitle=Finite+elements+in+analysis+and+design&rft.au=Meng%2C+Chunyu&rft.au=Tang%2C+Zhengjun&rft.au=Chen%2C+Mingxiang&rft.au=Peng%2C+Qi&rft.date=2018-10-01&rft.pub=Elsevier+BV&rft.issn=0168-874X&rft.volume=150&rft.spage=1&rft_id=info:doi/10.1016%2Fj.finel.2018.07.001&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-874X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-874X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-874X&client=summon