Return mapping algorithm in principal space for general isotropic elastoplasticity involving multi-surface plasticity and combined isotropic-kinematic hardening within finite deformation framework
The compatibility with complicated elastoplasticity and efficiency of the constitutive integration algorithm both significantly influence the performance of finite element analysis for engineering practical problems. In this work, a numerical integration algorithm in principal space is proposed for...
Saved in:
| Published in: | Finite elements in analysis and design Vol. 150; pp. 1 - 19 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Amsterdam
Elsevier B.V
01.10.2018
Elsevier BV |
| Subjects: | |
| ISSN: | 0168-874X, 1872-6925 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The compatibility with complicated elastoplasticity and efficiency of the constitutive integration algorithm both significantly influence the performance of finite element analysis for engineering practical problems. In this work, a numerical integration algorithm in principal space is proposed for general isotropic elastoplastic constitutive models that involve multi-surface plasticity with corners in the yield surface and combined isotropic-kinematic hardening law as well as nonlinear elasticity within the framework of finite deformation. For the multi-surface plasticity, a strategy, which uses the mid-direction of two plastic flow directions at a corner as the border of critical regions, is proposed to predict the yield functions activated in the return mapping iterations, making the prediction procedure simpler. By making use of the relative stress, the combined isotropic-kinematic hardening law is incorporated into the numerical integration algorithm in principal space. The consistent tangent operator is also derived. Besides, the fully implicit return mapping algorithm based on representation theorem is employed. The expressions of the first and second derivatives of yield/potential function, which are frequently evaluated in the algorithm, maintain a simple form and reduce the computational cost. Solution of finite element practical problems demonstrates that compatibility and efficiency of the constitutive integration algorithm are improved while accuracy is retained.
•A numerical integration algorithm in principal space is proposed for general isotropic elastoplastic constitutive models.•A simpler strategy for predicting multi yield surface activation in the return mapping iterations is proposed.•Combined isotropic-kinematic hardening is incorporated into principal space algorithm along with multi-surface plasticity.•Compatibility and efficiency of the constitutive integration algorithm are improved while accuracy is retained. |
|---|---|
| AbstractList | The compatibility with complicated elastoplasticity and efficiency of the constitutive integration algorithm both significantly influence the performance of finite element analysis for engineering practical problems. In this work, a numerical integration algorithm in principal space is proposed for general isotropic elastoplastic constitutive models that involve multi-surface plasticity with corners in the yield surface and combined isotropic-kinematic hardening law as well as nonlinear elasticity within the framework of finite deformation. For the multi-surface plasticity, a strategy, which uses the mid-direction of two plastic flow directions at a corner as the border of critical regions, is proposed to predict the yield functions activated in the return mapping iterations, making the prediction procedure simpler. By making use of the relative stress, the combined isotropic-kinematic hardening law is incorporated into the numerical integration algorithm in principal space. The consistent tangent operator is also derived. Besides, the fully implicit return mapping algorithm based on representation theorem is employed. The expressions of the first and second derivatives of yield/potential function, which are frequently evaluated in the algorithm, maintain a simple form and reduce the computational cost. Solution of finite element practical problems demonstrates that compatibility and efficiency of the constitutive integration algorithm are improved while accuracy is retained. The compatibility with complicated elastoplasticity and efficiency of the constitutive integration algorithm both significantly influence the performance of finite element analysis for engineering practical problems. In this work, a numerical integration algorithm in principal space is proposed for general isotropic elastoplastic constitutive models that involve multi-surface plasticity with corners in the yield surface and combined isotropic-kinematic hardening law as well as nonlinear elasticity within the framework of finite deformation. For the multi-surface plasticity, a strategy, which uses the mid-direction of two plastic flow directions at a corner as the border of critical regions, is proposed to predict the yield functions activated in the return mapping iterations, making the prediction procedure simpler. By making use of the relative stress, the combined isotropic-kinematic hardening law is incorporated into the numerical integration algorithm in principal space. The consistent tangent operator is also derived. Besides, the fully implicit return mapping algorithm based on representation theorem is employed. The expressions of the first and second derivatives of yield/potential function, which are frequently evaluated in the algorithm, maintain a simple form and reduce the computational cost. Solution of finite element practical problems demonstrates that compatibility and efficiency of the constitutive integration algorithm are improved while accuracy is retained. •A numerical integration algorithm in principal space is proposed for general isotropic elastoplastic constitutive models.•A simpler strategy for predicting multi yield surface activation in the return mapping iterations is proposed.•Combined isotropic-kinematic hardening is incorporated into principal space algorithm along with multi-surface plasticity.•Compatibility and efficiency of the constitutive integration algorithm are improved while accuracy is retained. |
| Author | Peng, Qi Chen, Mingxiang Tang, Zhengjun Meng, Chunyu |
| Author_xml | – sequence: 1 givenname: Chunyu surname: Meng fullname: Meng, Chunyu – sequence: 2 givenname: Zhengjun surname: Tang fullname: Tang, Zhengjun – sequence: 3 givenname: Mingxiang surname: Chen fullname: Chen, Mingxiang – sequence: 4 givenname: Qi surname: Peng fullname: Peng, Qi email: pearqiqi@whu.edu.cn |
| BookMark | eNqFkUFrFTEUhYNU8LX6C9wEXM-YzGTmZRYupGgVCkJRcBcyyc1rXmeSMcl7pf_PH9Y7fYLiQjcJCec7OTfnnJyFGICQ15zVnPH-7b52PsBUN4zLmm1rxvgzsuFy21T90HRnZIMqWcmt-P6CnOe8Z4x1TS825OcNlEMKdNbL4sOO6mkXky-3M_WBLskH4xc90bxoA9TFRHcQIOGNz7GkuHhDYdK5xGVdvfHlAcljnI6r23yYiq_yIbkV_0Oig6UmziOmtr-tqjs8zxo19FYnC2H1uMc0mAUH9AWoBQyxSiJeJT3DfUx3L8lzp6cMr37tF-Tbxw9fLz9V11-uPl--v65M2_JSdbYztm3M6AZtR22k6LjspOWjEE6OPe9d35mudVw2TjjQ1rBRjGZoWWd1O7QX5M3Jd0nxxwFyUfuIn4dPqobzXjDBZIuq4aQyKeacwCkc-SlxSdpPijO1lqb26qk0tZam2FZhaci2f7HYwazTw3-odycKcPijh6Sy8RAMWJ_AFGWj_yf_CArivLw |
| CitedBy_id | crossref_primary_10_1016_j_finel_2024_104310 crossref_primary_10_1016_j_compstruc_2021_106652 crossref_primary_10_1007_s10338_022_00325_4 crossref_primary_10_1016_j_advengsoft_2021_103067 crossref_primary_10_3390_app11104637 crossref_primary_10_1016_j_finel_2021_103531 crossref_primary_10_1007_s11340_021_00709_6 crossref_primary_10_1016_j_apm_2021_11_003 crossref_primary_10_1016_j_euromechsol_2022_104775 |
| Cites_doi | 10.1002/nag.179 10.1090/qam/59769 10.1016/j.compstruc.2007.04.002 10.1002/nag.231 10.1016/j.compstruc.2006.10.001 10.1002/zamm.19950750410 10.1016/j.compstruc.2011.11.006 10.1061/(ASCE)0733-9399(1990)116:8(1764) 10.1002/nag.2244 10.1002/nme.970 10.1063/1.1708953 10.1016/S0020-7683(03)00155-0 10.1016/S0022-5096(00)00023-5 |
| ContentType | Journal Article |
| Copyright | 2018 Elsevier B.V. Copyright Elsevier BV Oct 1, 2018 |
| Copyright_xml | – notice: 2018 Elsevier B.V. – notice: Copyright Elsevier BV Oct 1, 2018 |
| DBID | AAYXX CITATION 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
| DOI | 10.1016/j.finel.2018.07.001 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Civil Engineering Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Engineering |
| EISSN | 1872-6925 |
| EndPage | 19 |
| ExternalDocumentID | 10_1016_j_finel_2018_07_001 S0168874X1730923X |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABAOU ABBOA ABMAC ABYKQ ACAZW ACDAQ ACGFS ACIWK ACRLP ACZNC ADBBV ADEZE ADGUI ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIGVJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ARUGR AXJTR BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W JJJVA KOM LX9 LY7 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 RIG RNS ROL RPZ SDF SDG SES SPC SPCBC SST SSV SSW SSZ T5K TN5 XPP ZMT ~02 ~G- 29H 9DU AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABJNI ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFFNX AFJKZ AFPUW AGQPQ AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- SBC SET SEW T9H VH1 WUQ ~HD 7SC 7TB 8FD AFXIZ AGCQF AGRNS FR3 JQ2 KR7 L7M L~C L~D SSH |
| ID | FETCH-LOGICAL-c331t-5d5cd32cbf9adbac8451858d1b44f8b616f65c53f182f4feadc0b4bc9305da393 |
| ISICitedReferencesCount | 9 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000442888600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0168-874X |
| IngestDate | Fri Jul 25 07:39:09 EDT 2025 Sat Nov 29 04:56:32 EST 2025 Tue Nov 18 22:31:02 EST 2025 Fri Feb 23 02:34:33 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Combined hardening Representation theorem Finite strain elastoplasticity Multi-surface plasticity Return mapping algorithm |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c331t-5d5cd32cbf9adbac8451858d1b44f8b616f65c53f182f4feadc0b4bc9305da393 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2116404083 |
| PQPubID | 2045476 |
| PageCount | 19 |
| ParticipantIDs | proquest_journals_2116404083 crossref_citationtrail_10_1016_j_finel_2018_07_001 crossref_primary_10_1016_j_finel_2018_07_001 elsevier_sciencedirect_doi_10_1016_j_finel_2018_07_001 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-10-01 2018-10-00 20181001 |
| PublicationDateYYYYMMDD | 2018-10-01 |
| PublicationDate_xml | – month: 10 year: 2018 text: 2018-10-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Amsterdam |
| PublicationPlace_xml | – name: Amsterdam |
| PublicationTitle | Finite elements in analysis and design |
| PublicationYear | 2018 |
| Publisher | Elsevier B.V Elsevier BV |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
| References | Simo, Hughes (bib1) 1998 Foster, Regueiro, Fossum, Borja (bib20) 2005; 194 Crisfield (bib16) 1997; vol. 2 Huang, Peng, Chen (bib23) 2014; 38 Palazzo, Rosati, Valoroso (bib21) 2001; 191 Crisfield (bib4) 1997; vol. 2 Rorja, Sama, Sanz (bib10) 2003; 192 Zheng, Betten (bib25) 2015; 75 Ben-Israel, Greville (bib31) 2003 Simo (bib2) 1998; 6 Clausen, Damkilde, Andersen (bib17) 2007; 85 Rouainia, Wood (bib6) 2001; 25 Zheng (bib24) 1994; 47 Rosati, Valoroso (bib19) 2004; 60 Lee, Liu (bib27) 1967; 38 Tamagnini, Castellanza, Nova (bib9) 2002; 26 Simo, Ortiz (bib11) 1985; 49 Alfano, Rosati, Valoroso (bib8) 1998 Khoei, Bakhshiani, Mofid (bib7) 2003; 40 Larsson, Runesson (bib18) 2015; 1 Criscione, Humphrey, Douglas, Hunte (bib26) 2000; 4 Koiter (bib29) 1953; 11 Simo (bib12) 1992 Lee (bib28) 1969; 36 Koiter (bib3) 1953; 11 Simo, Taylor (bib14) 1985; 48 Ju (bib13) 1990; 116 Wilkins (bib15) 1964; vol. 3 Dolarevic, Ibrahimbegovic (bib30) 2007; 85 Peng, Chen (bib22) 2012; 92–93 Peric, Neto (bib5) 1999; 171 Koiter (10.1016/j.finel.2018.07.001_bib29) 1953; 11 Rosati (10.1016/j.finel.2018.07.001_bib19) 2004; 60 Simo (10.1016/j.finel.2018.07.001_bib14) 1985; 48 Koiter (10.1016/j.finel.2018.07.001_bib3) 1953; 11 Dolarevic (10.1016/j.finel.2018.07.001_bib30) 2007; 85 Alfano (10.1016/j.finel.2018.07.001_bib8) 1998 Zheng (10.1016/j.finel.2018.07.001_bib25) 2015; 75 Tamagnini (10.1016/j.finel.2018.07.001_bib9) 2002; 26 Peng (10.1016/j.finel.2018.07.001_bib22) 2012; 92–93 Rouainia (10.1016/j.finel.2018.07.001_bib6) 2001; 25 Rorja (10.1016/j.finel.2018.07.001_bib10) 2003; 192 Huang (10.1016/j.finel.2018.07.001_bib23) 2014; 38 Ben-Israel (10.1016/j.finel.2018.07.001_bib31) 2003 Criscione (10.1016/j.finel.2018.07.001_bib26) 2000; 4 Crisfield (10.1016/j.finel.2018.07.001_bib16) 1997; vol. 2 Ju (10.1016/j.finel.2018.07.001_bib13) 1990; 116 Wilkins (10.1016/j.finel.2018.07.001_bib15) 1964; vol. 3 Palazzo (10.1016/j.finel.2018.07.001_bib21) 2001; 191 Zheng (10.1016/j.finel.2018.07.001_bib24) 1994; 47 Clausen (10.1016/j.finel.2018.07.001_bib17) 2007; 85 Lee (10.1016/j.finel.2018.07.001_bib27) 1967; 38 Lee (10.1016/j.finel.2018.07.001_bib28) 1969; 36 Simo (10.1016/j.finel.2018.07.001_bib12) 1992 Larsson (10.1016/j.finel.2018.07.001_bib18) 2015; 1 Crisfield (10.1016/j.finel.2018.07.001_bib4) 1997; vol. 2 Simo (10.1016/j.finel.2018.07.001_bib11) 1985; 49 Simo (10.1016/j.finel.2018.07.001_bib1) 1998 Simo (10.1016/j.finel.2018.07.001_bib2) 1998; 6 Khoei (10.1016/j.finel.2018.07.001_bib7) 2003; 40 Foster (10.1016/j.finel.2018.07.001_bib20) 2005; 194 Peric (10.1016/j.finel.2018.07.001_bib5) 1999; 171 |
| References_xml | – year: 1998 ident: bib8 article-title: Closed-form evaluation of the consistent tangent operator for isotropic yield criteria of arbitrary type publication-title: Proceedings of IV World Congress of Computational Mechanics, Buenos Aires – volume: 26 start-page: 963 year: 2002 end-page: 1004 ident: bib9 article-title: A generalized backward euler algorithm for the numerical integration of an isotropic hardening elastoplastic model for mechanical and chemical degradation of bonded geomaterials publication-title: Int. J. Numer. Anal. Meth. – volume: 36 start-page: 1 year: 1969 end-page: 6 ident: bib28 article-title: Elastic-plastic deformation at finite strains publication-title: J. Appl. Phys. – volume: 6 start-page: 183 year: 1998 end-page: 499 ident: bib2 article-title: Numerical analysis and simulation of plasticity publication-title: Handb. Numer. Anal. – volume: 192 start-page: 1227 year: 2003 end-page: 1258 ident: bib10 article-title: On the numerical integration of threeinvariant elastoplastic constitutive models publication-title: Comput. Meth. Appl. Math. – volume: 11 start-page: 350 year: 1953 end-page: 354 ident: bib3 article-title: Stress-strain relations, uniqueness and variational theorems for elastic-plastic materials with a singular yield surface publication-title: Q. Appl. Math. – volume: 40 start-page: 3393 year: 2003 end-page: 3423 ident: bib7 article-title: An implicit algorithm for hypoelastoplastic and hypoelasto-viscoplastic endochronic theory in finite strain isotropic–kinematic-hardening model publication-title: Int. J. Solid Struct. – volume: 38 start-page: 19 year: 1967 end-page: 27 ident: bib27 article-title: Finite strain elastic-plastic theory with application to plane-wave analysis publication-title: J. Appl. Phys. – volume: 92–93 start-page: 173 year: 2012 end-page: 184 ident: bib22 article-title: An efficient return mapping algorithm for general isotropic elastoplasticity in principal space publication-title: Comput. Struct. – volume: 171 start-page: 463 year: 1999 end-page: 489 ident: bib5 article-title: A new computational model for tresca plasticity at finite strains with an optimal parametrization in the principal space publication-title: Comput. Meth. Appl. Math. – volume: 49 start-page: 221 year: 1985 end-page: 245 ident: bib11 article-title: A unified approach to finite deformation elastoplastic analysis based on the use of hyperelastic constitutive equations publication-title: Comput. Meth. Appl. Math. – volume: 48 start-page: 101 year: 1985 end-page: 118 ident: bib14 article-title: Consistent tangent operators for rate-independent Elastoplasticity publication-title: Comput. Meth. Appl. Math. – volume: 194 start-page: 5109 year: 2005 end-page: 5138 ident: bib20 article-title: Implicit numerical integration of a three-invariant, isotropic/kinematic hardening cap plasticity model for Geomaterials publication-title: Comput. Meth. Appl. Math. – volume: 25 start-page: 1305 year: 2001 end-page: 1325 ident: bib6 article-title: Implicit numerical integration for a kinematic hardening soil plasticity model publication-title: Int. J. Numer. Anal. Meth. – volume: vol. 3 year: 1964 ident: bib15 article-title: Calculation of Elastic–plastic Flow publication-title: Methods of Computational Physics – volume: 60 start-page: 461 year: 2004 end-page: 498 ident: bib19 article-title: A return map algorithm for general isotropic elasto/visco-plastic materials in principal space publication-title: Int. J. Numer. Meth. Eng. – volume: 11 start-page: 350 year: 1953 end-page: 354 ident: bib29 article-title: Stress-strain relations, uniqueness and variational theorems for elastic- plastic materials with a singular yield surface publication-title: Q. Appl. Math. – volume: vol. 2 year: 1997 ident: bib4 publication-title: Non-linear Finite Element Analysis of Solids and Structures: Advanced Topics – volume: vol. 2 year: 1997 ident: bib16 article-title: Non-linear Finite Element Analysis of Solids and Structures publication-title: Advanced Topics – volume: 4 start-page: 2445 year: 2000 end-page: 2465 ident: bib26 article-title: An invariant basis for natural strain which yields orthogonal stress response terms in isotropic hyperelasticity publication-title: J. Mech. Phys. Solid. – volume: 1 start-page: 367 year: 2015 end-page: 383 ident: bib18 article-title: Implicit integration and consistent linearization for yield criteria of the mohr–coulomb type publication-title: Int. J. Numer. Anal. Meth. – year: 1998 ident: bib1 article-title: Computational Inelasticity – volume: 85 start-page: 419 year: 2007 end-page: 430 ident: bib30 article-title: A modified three-surface elasto-plastic cap model and its numerical implementation publication-title: Comput. Struct. – year: 2003 ident: bib31 article-title: Generalized Inverses: Theory and Applications – volume: 38 start-page: 636 year: 2014 end-page: 660 ident: bib23 article-title: An improved return-map stress update algorithm for finite deformation analysis of general isotropic elastoplastic geomaterials publication-title: Int. J. Numer. Anal. Meth. – volume: 75 start-page: 269 year: 2015 end-page: 281 ident: bib25 article-title: On the tensor function representations of 2nd-order and 4th-order tensors(Part I) publication-title: ZAMM - J. Appl. Math. Mech. – volume: 85 start-page: 1795 year: 2007 end-page: 1807 ident: bib17 article-title: An efficient return algorithm for nonassociated plasticity with linear yield criteria in principal stress space publication-title: Comput. Struct. – year: 1992 ident: bib12 article-title: Algorithms for Static and Dynamic Multiplicative Plasticity that Preserve the Classical Return Mapping Schemes of the Infinitesimal Theory – volume: 116 start-page: 1764 year: 1990 end-page: 1779 ident: bib13 article-title: Consistent tangent moduli for a class of viscoplasticity publication-title: J. Eng. Mech. – volume: 191 start-page: 903 year: 2001 end-page: 939 ident: bib21 article-title: Solution procedures for J3, plasticity and Viscoplasticity publication-title: Comput. Meth. Appl. Math. – volume: 47 start-page: 545 year: 1994 ident: bib24 article-title: Theory of representations for tensor functions-a unified invariant approach to constitutive equations publication-title: Agron. J. – volume: 1 start-page: 367 issue: 4 year: 2015 ident: 10.1016/j.finel.2018.07.001_bib18 article-title: Implicit integration and consistent linearization for yield criteria of the mohr–coulomb type publication-title: Int. J. Numer. Anal. Meth. – volume: 25 start-page: 1305 issue: 13 year: 2001 ident: 10.1016/j.finel.2018.07.001_bib6 article-title: Implicit numerical integration for a kinematic hardening soil plasticity model publication-title: Int. J. Numer. Anal. Meth. doi: 10.1002/nag.179 – year: 1998 ident: 10.1016/j.finel.2018.07.001_bib1 – volume: 11 start-page: 350 issue: 3 year: 1953 ident: 10.1016/j.finel.2018.07.001_bib29 article-title: Stress-strain relations, uniqueness and variational theorems for elastic- plastic materials with a singular yield surface publication-title: Q. Appl. Math. doi: 10.1090/qam/59769 – volume: 48 start-page: 101 issue: 1 year: 1985 ident: 10.1016/j.finel.2018.07.001_bib14 article-title: Consistent tangent operators for rate-independent Elastoplasticity publication-title: Comput. Meth. Appl. Math. – volume: 192 start-page: 1227 issue: 9–10 year: 2003 ident: 10.1016/j.finel.2018.07.001_bib10 article-title: On the numerical integration of threeinvariant elastoplastic constitutive models publication-title: Comput. Meth. Appl. Math. – volume: 85 start-page: 1795 issue: 23–24 year: 2007 ident: 10.1016/j.finel.2018.07.001_bib17 article-title: An efficient return algorithm for nonassociated plasticity with linear yield criteria in principal stress space publication-title: Comput. Struct. doi: 10.1016/j.compstruc.2007.04.002 – volume: 191 start-page: 903 issue: 8–10 year: 2001 ident: 10.1016/j.finel.2018.07.001_bib21 article-title: Solution procedures for J3, plasticity and Viscoplasticity publication-title: Comput. Meth. Appl. Math. – volume: vol. 2 year: 1997 ident: 10.1016/j.finel.2018.07.001_bib4 – volume: 26 start-page: 963 issue: 10 year: 2002 ident: 10.1016/j.finel.2018.07.001_bib9 article-title: A generalized backward euler algorithm for the numerical integration of an isotropic hardening elastoplastic model for mechanical and chemical degradation of bonded geomaterials publication-title: Int. J. Numer. Anal. Meth. doi: 10.1002/nag.231 – volume: 47 start-page: 545 issue: 11 year: 1994 ident: 10.1016/j.finel.2018.07.001_bib24 article-title: Theory of representations for tensor functions-a unified invariant approach to constitutive equations publication-title: Agron. J. – volume: 85 start-page: 419 issue: 7 year: 2007 ident: 10.1016/j.finel.2018.07.001_bib30 article-title: A modified three-surface elasto-plastic cap model and its numerical implementation publication-title: Comput. Struct. doi: 10.1016/j.compstruc.2006.10.001 – volume: 36 start-page: 1 issue: 1 year: 1969 ident: 10.1016/j.finel.2018.07.001_bib28 article-title: Elastic-plastic deformation at finite strains publication-title: J. Appl. Phys. – volume: 75 start-page: 269 year: 2015 ident: 10.1016/j.finel.2018.07.001_bib25 article-title: On the tensor function representations of 2nd-order and 4th-order tensors(Part I) publication-title: ZAMM - J. Appl. Math. Mech. doi: 10.1002/zamm.19950750410 – volume: 6 start-page: 183 issue: 6 year: 1998 ident: 10.1016/j.finel.2018.07.001_bib2 article-title: Numerical analysis and simulation of plasticity publication-title: Handb. Numer. Anal. – volume: 171 start-page: 463 issue: 3 year: 1999 ident: 10.1016/j.finel.2018.07.001_bib5 article-title: A new computational model for tresca plasticity at finite strains with an optimal parametrization in the principal space publication-title: Comput. Meth. Appl. Math. – volume: 49 start-page: 221 issue: 2 year: 1985 ident: 10.1016/j.finel.2018.07.001_bib11 article-title: A unified approach to finite deformation elastoplastic analysis based on the use of hyperelastic constitutive equations publication-title: Comput. Meth. Appl. Math. – volume: 92–93 start-page: 173 issue: 3 year: 2012 ident: 10.1016/j.finel.2018.07.001_bib22 article-title: An efficient return mapping algorithm for general isotropic elastoplasticity in principal space publication-title: Comput. Struct. doi: 10.1016/j.compstruc.2011.11.006 – volume: 116 start-page: 1764 issue: 8 year: 1990 ident: 10.1016/j.finel.2018.07.001_bib13 article-title: Consistent tangent moduli for a class of viscoplasticity publication-title: J. Eng. Mech. doi: 10.1061/(ASCE)0733-9399(1990)116:8(1764) – volume: 11 start-page: 350 issue: 3 year: 1953 ident: 10.1016/j.finel.2018.07.001_bib3 article-title: Stress-strain relations, uniqueness and variational theorems for elastic-plastic materials with a singular yield surface publication-title: Q. Appl. Math. doi: 10.1090/qam/59769 – volume: 194 start-page: 5109 issue: 50–52 year: 2005 ident: 10.1016/j.finel.2018.07.001_bib20 article-title: Implicit numerical integration of a three-invariant, isotropic/kinematic hardening cap plasticity model for Geomaterials publication-title: Comput. Meth. Appl. Math. – volume: 38 start-page: 636 issue: 6 year: 2014 ident: 10.1016/j.finel.2018.07.001_bib23 article-title: An improved return-map stress update algorithm for finite deformation analysis of general isotropic elastoplastic geomaterials publication-title: Int. J. Numer. Anal. Meth. doi: 10.1002/nag.2244 – volume: vol. 3 year: 1964 ident: 10.1016/j.finel.2018.07.001_bib15 article-title: Calculation of Elastic–plastic Flow – volume: 60 start-page: 461 issue: 2 year: 2004 ident: 10.1016/j.finel.2018.07.001_bib19 article-title: A return map algorithm for general isotropic elasto/visco-plastic materials in principal space publication-title: Int. J. Numer. Meth. Eng. doi: 10.1002/nme.970 – volume: 38 start-page: 19 issue: 1 year: 1967 ident: 10.1016/j.finel.2018.07.001_bib27 article-title: Finite strain elastic-plastic theory with application to plane-wave analysis publication-title: J. Appl. Phys. doi: 10.1063/1.1708953 – year: 2003 ident: 10.1016/j.finel.2018.07.001_bib31 – year: 1992 ident: 10.1016/j.finel.2018.07.001_bib12 – year: 1998 ident: 10.1016/j.finel.2018.07.001_bib8 article-title: Closed-form evaluation of the consistent tangent operator for isotropic yield criteria of arbitrary type – volume: 40 start-page: 3393 issue: 13–14 year: 2003 ident: 10.1016/j.finel.2018.07.001_bib7 article-title: An implicit algorithm for hypoelastoplastic and hypoelasto-viscoplastic endochronic theory in finite strain isotropic–kinematic-hardening model publication-title: Int. J. Solid Struct. doi: 10.1016/S0020-7683(03)00155-0 – volume: vol. 2 year: 1997 ident: 10.1016/j.finel.2018.07.001_bib16 article-title: Non-linear Finite Element Analysis of Solids and Structures – volume: 4 start-page: 2445 issue: 12 year: 2000 ident: 10.1016/j.finel.2018.07.001_bib26 article-title: An invariant basis for natural strain which yields orthogonal stress response terms in isotropic hyperelasticity publication-title: J. Mech. Phys. Solid. doi: 10.1016/S0022-5096(00)00023-5 |
| SSID | ssj0005264 |
| Score | 2.2365055 |
| Snippet | The compatibility with complicated elastoplasticity and efficiency of the constitutive integration algorithm both significantly influence the performance of... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Algorithms Combined hardening Compatibility Constitutive models Deformation Elasticity Elastoplasticity Finite element analysis Finite element method Finite strain elastoplasticity Hardening Kinematics Mapping Mathematical analysis Mathematical models Multi-surface plasticity Numerical integration Operators (mathematics) Plastic flow Plastic properties Representation theorem Return mapping algorithm |
| Title | Return mapping algorithm in principal space for general isotropic elastoplasticity involving multi-surface plasticity and combined isotropic-kinematic hardening within finite deformation framework |
| URI | https://dx.doi.org/10.1016/j.finel.2018.07.001 https://www.proquest.com/docview/2116404083 |
| Volume | 150 |
| WOSCitedRecordID | wos000442888600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-6925 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005264 issn: 0168-874X databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9NAEF2FlAM98FGoaCloD9yCq9her9fHqmoFCCo-Coq4WPZ6nTqkTpQ4Vfh__C0kZj3rjdNABUhcrGSztleZl5m3kzdjQp6zLIHIkgNzS5lymGS-k6iQO5FMeSYS4cm6A9_nN-HZmRgMonedzo-mFuZqHJalWC6j6X81NYyBsXXp7F-Y214UBuA1GB2OYHY4_pHhPyiIImXvMpnWpVDJeDiZFdXFZa0Xx9S6rhGBvTL2-x5i4-leMZ9Us8m0kD0FjLqaTPWxkJqlFyU4sTrzUOsPnfliluvTW1NMeRzss4HB2ks5X-E9NoXV1V3Kpn5hLXmh6W4vU7Z-spc3SrE2ZT7FeQp17rV8N2k6qei7ZmsaFK3SRRnBovy2WOUlcPTLBXw8WtjZx6Y25S2sawk_lOEqUuAJ74t2WsQVVmBncnUb9TqYPuUC_D9qQg8VunwReg6PsPzaxgTshmu8utuiB-jgNwIP5kBGh_DdKf2PlivqnrBmResdvT_qZehVuOBegWAPbpEtLwwi0SVbR69OBq9bGiVumtPjspu2WbVAceNWv6NW10hGzZzO75O7ZstDjxCqD0hHlTvkntn-UBNc5jtku9Ub8yH5jjimBsfU4pgWJbU4pjWOKUCIGhxTCz56HcfU4piu4Zi2pgCiaINj-gscU4tjijimiGPawjG1OH5EPp2enB-_dMwjRxzp-27lBFkgM9-TaR4lWZpIwQIgtCJzU8ZykXKX5zyQgZ_DtjxnObhh2U9ZKiMIm1niR_4u6ZaTUj0mVIo-DPDUcxVjMDmSUobgLxXPGGwL-B7xGmvF0vTj14-FGceN8HIU1yaOtYnjvtaJuHvkhT1piu1obp7OGxjEhlEjU44BtzefeNCAJja-bR57rssZBH3h7__rdZ-QO6sf6wHpVrOFekpuy6uqmM-eGfj_BMXPDas |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Return+mapping+algorithm+in+principal+space+for+general+isotropic+elastoplasticity+involving+multi-surface+plasticity+and+combined+isotropic-kinematic+hardening+within+finite+deformation+framework&rft.jtitle=Finite+elements+in+analysis+and+design&rft.au=Meng%2C+Chunyu&rft.au=Tang%2C+Zhengjun&rft.au=Chen%2C+Mingxiang&rft.au=Peng%2C+Qi&rft.date=2018-10-01&rft.pub=Elsevier+B.V&rft.issn=0168-874X&rft.eissn=1872-6925&rft.volume=150&rft.spage=1&rft.epage=19&rft_id=info:doi/10.1016%2Fj.finel.2018.07.001&rft.externalDocID=S0168874X1730923X |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-874X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-874X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-874X&client=summon |