Designing equitable algorithms

Predictive algorithms are now commonly used to distribute society's resources and sanctions. But these algorithms can entrench and exacerbate inequities. To guard against this possibility, many have suggested that algorithms be subject to formal fairness constraints. Here we argue, however, tha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature Computational Science Jg. 3; H. 7; S. 601 - 610
Hauptverfasser: Chohlas-Wood, Alex, Coots, Madison, Goel, Sharad, Nyarko, Julian
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States Nature Publishing Group 01.07.2023
Schlagworte:
ISSN:2662-8457, 2662-8457
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Predictive algorithms are now commonly used to distribute society's resources and sanctions. But these algorithms can entrench and exacerbate inequities. To guard against this possibility, many have suggested that algorithms be subject to formal fairness constraints. Here we argue, however, that popular constraints-while intuitively appealing-often worsen outcomes for individuals in marginalized groups, and can even leave all groups worse off. We outline a more holistic path forward for improving the equity of algorithmically guided decisions.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ISSN:2662-8457
2662-8457
DOI:10.1038/s43588-023-00485-4