Designing equitable algorithms

Predictive algorithms are now commonly used to distribute society's resources and sanctions. But these algorithms can entrench and exacerbate inequities. To guard against this possibility, many have suggested that algorithms be subject to formal fairness constraints. Here we argue, however, tha...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Nature Computational Science Ročník 3; číslo 7; s. 601 - 610
Hlavní autori: Chohlas-Wood, Alex, Coots, Madison, Goel, Sharad, Nyarko, Julian
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States Nature Publishing Group 01.07.2023
Predmet:
ISSN:2662-8457, 2662-8457
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Predictive algorithms are now commonly used to distribute society's resources and sanctions. But these algorithms can entrench and exacerbate inequities. To guard against this possibility, many have suggested that algorithms be subject to formal fairness constraints. Here we argue, however, that popular constraints-while intuitively appealing-often worsen outcomes for individuals in marginalized groups, and can even leave all groups worse off. We outline a more holistic path forward for improving the equity of algorithmically guided decisions.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ISSN:2662-8457
2662-8457
DOI:10.1038/s43588-023-00485-4