Designing equitable algorithms
Predictive algorithms are now commonly used to distribute society's resources and sanctions. But these algorithms can entrench and exacerbate inequities. To guard against this possibility, many have suggested that algorithms be subject to formal fairness constraints. Here we argue, however, tha...
Uložené v:
| Vydané v: | Nature Computational Science Ročník 3; číslo 7; s. 601 - 610 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
United States
Nature Publishing Group
01.07.2023
|
| Predmet: | |
| ISSN: | 2662-8457, 2662-8457 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | Predictive algorithms are now commonly used to distribute society's resources and sanctions. But these algorithms can entrench and exacerbate inequities. To guard against this possibility, many have suggested that algorithms be subject to formal fairness constraints. Here we argue, however, that popular constraints-while intuitively appealing-often worsen outcomes for individuals in marginalized groups, and can even leave all groups worse off. We outline a more holistic path forward for improving the equity of algorithmically guided decisions. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
| ISSN: | 2662-8457 2662-8457 |
| DOI: | 10.1038/s43588-023-00485-4 |