Designing equitable algorithms

Predictive algorithms are now commonly used to distribute society's resources and sanctions. But these algorithms can entrench and exacerbate inequities. To guard against this possibility, many have suggested that algorithms be subject to formal fairness constraints. Here we argue, however, tha...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Nature Computational Science Ročník 3; číslo 7; s. 601 - 610
Hlavní autoři: Chohlas-Wood, Alex, Coots, Madison, Goel, Sharad, Nyarko, Julian
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States Nature Publishing Group 01.07.2023
Témata:
ISSN:2662-8457, 2662-8457
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Predictive algorithms are now commonly used to distribute society's resources and sanctions. But these algorithms can entrench and exacerbate inequities. To guard against this possibility, many have suggested that algorithms be subject to formal fairness constraints. Here we argue, however, that popular constraints-while intuitively appealing-often worsen outcomes for individuals in marginalized groups, and can even leave all groups worse off. We outline a more holistic path forward for improving the equity of algorithmically guided decisions.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ISSN:2662-8457
2662-8457
DOI:10.1038/s43588-023-00485-4