A generalized (1+2)-dimensional Bogoyavlenskii–Kadomtsev–Petviashvili (BKP) equation: Multiple exp-function algorithm; conservation laws; similarity solutions
A generalized (1+2)-dimensional Bogoyavlenskii–Kadomtsev–Petviashvili (BKP) equation which is an augmentation of the Bogoyavlenskii–Schiff equation and Kadomtsev–Petviashvili equation is probed. This equation is hired as a prototype for evolutionary shallow-water waves. The Bogoyavlenskii–Kadomtsev–...
Uložené v:
| Vydané v: | Communications in nonlinear science & numerical simulation Ročník 106; s. 106072 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Amsterdam
Elsevier B.V
01.03.2022
Elsevier Science Ltd |
| Predmet: | |
| ISSN: | 1007-5704, 1878-7274 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | A generalized (1+2)-dimensional Bogoyavlenskii–Kadomtsev–Petviashvili (BKP) equation which is an augmentation of the Bogoyavlenskii–Schiff equation and Kadomtsev–Petviashvili equation is probed. This equation is hired as a prototype for evolutionary shallow-water waves. The Bogoyavlenskii–Kadomtsev–Petviashvili equation is ambassador of the higher dimensional Kadomtsev–Petviashvili hierarchy. This equation was acquired by a diminution for the well-known three-dimensional Kadomtsev–Petviashvili equation which illustrates the dissemination of nonlinear waves in plasmas and fluid dynamics. We determine novel exact solutions by utilizing the multiple exp-function algorithm and the modern group analysis method. Finally, we compute conserved currents courtesy using the invariance and multiplier technique. The findings can well mimic complex waves and their dealing dynamics in fluids.
•A generalized (1+2)-dimensional Bogoyavlenskii–Kadomtsev–Petviashvili (BKP) equation which is an augmentation of the Bogoyavlenskii–Schiff equation and Kadomtsev–Petviashvili equation is probed.•We determine novel exact solutions by utilizing the multiple exp-function algorithm and the modern group analysis method.•Finally, we compute conserved currents courtesy using the invariance and multiplier technique.•The Lie point symmetries consist of time translation, space translation and a scaling transformation.•The novell similarity reductions and new exact solutions are computed. The solutions obtained include the solitary waves, cnoidal and snoidal waves.•In addition, we derive the conservation laws of the underlying system by employing the multiplier variational method and discuss the significance of the computed conservation laws. |
|---|---|
| AbstractList | A generalized (1+2)-dimensional Bogoyavlenskii–Kadomtsev–Petviashvili (BKP) equation which is an augmentation of the Bogoyavlenskii–Schiff equation and Kadomtsev–Petviashvili equation is probed. This equation is hired as a prototype for evolutionary shallow-water waves. The Bogoyavlenskii–Kadomtsev–Petviashvili equation is ambassador of the higher dimensional Kadomtsev–Petviashvili hierarchy. This equation was acquired by a diminution for the well-known three-dimensional Kadomtsev–Petviashvili equation which illustrates the dissemination of nonlinear waves in plasmas and fluid dynamics. We determine novel exact solutions by utilizing the multiple exp-function algorithm and the modern group analysis method. Finally, we compute conserved currents courtesy using the invariance and multiplier technique. The findings can well mimic complex waves and their dealing dynamics in fluids.
•A generalized (1+2)-dimensional Bogoyavlenskii–Kadomtsev–Petviashvili (BKP) equation which is an augmentation of the Bogoyavlenskii–Schiff equation and Kadomtsev–Petviashvili equation is probed.•We determine novel exact solutions by utilizing the multiple exp-function algorithm and the modern group analysis method.•Finally, we compute conserved currents courtesy using the invariance and multiplier technique.•The Lie point symmetries consist of time translation, space translation and a scaling transformation.•The novell similarity reductions and new exact solutions are computed. The solutions obtained include the solitary waves, cnoidal and snoidal waves.•In addition, we derive the conservation laws of the underlying system by employing the multiplier variational method and discuss the significance of the computed conservation laws. A generalized (1 + 2)-dimensional Bogoyavlenskii–Kadomtsev–Petviashvili (BKP) equation which is an augmentation of the Bogoyavlenskii–Schiff equation and Kadomtsev–Petviashvili equation is probed. This equation is hired as a prototype for evolutionary shallow-water waves. The Bogoyavlenskii–Kadomtsev–Petviashvili equation is ambassador of the higher dimensional Kadomtsev–Petviashvili hierarchy. This equation was acquired by a diminution for the well-known three-dimensional Kadomtsev–Petviashvili equation which illustrates the dissemination of nonlinear waves in plasmas and fluid dynamics. We determine novel exact solutions by utilizing the multiple exp-function algorithm and the modern group analysis method. Finally, we compute conserved currents courtesy using the invariance and multiplier technique. The findings can well mimic complex waves and their dealing dynamics in fluids. |
| ArticleNumber | 106072 |
| Author | Adem, A.R. Muatjetjeja, B. Moretlo, T.S. |
| Author_xml | – sequence: 1 givenname: T.S. surname: Moretlo fullname: Moretlo, T.S. email: thabo.moretlo@spu.ac.za organization: Department of Mathematical Sciences, Sol Plaatje University, Private Bag X5008, Kimberley 8300, Republic of South Africa – sequence: 2 givenname: A.R. surname: Adem fullname: Adem, A.R. email: ademar@unisa.ac.za organization: Department of Mathematical Sciences, University of South Africa, UNISA 0003, Republic of South Africa – sequence: 3 givenname: B. surname: Muatjetjeja fullname: Muatjetjeja, B. email: muatjetjejab@ub.ac.bw organization: Department of Mathematics, Faculty of Science, University of Botswana, Private Bag 22, Gaborone, Botswana |
| BookMark | eNqFkcFu1DAURSNUJNrCF7CxxKYVymA78Tih6qKtoKAW0QWsLcd5nnpw7KntBIYV_8Af9NP6JfXMsGIBKz_dd4-l--5Bsee8g6J4SfCMYDJ_s5wpF12cUUxJVuaY0yfFPml4U3LK6708Y8xLxnH9rDiIcYkz1bJ6v7g_QwtwEKQ1P6FHR-Q1PS57M4CLxjtp0blf-LWcbBa-GfPw6_eV7P2QIkx5voE0GRlvJ2MNOjq_ujlGcDfKlNG36NNok1lZQPBjVerRqY2MpF34YNLtcIKUdxHCtLUjK7_HExTNYKzM-zWK3o6bTXxePNXSRnjx5z0svr5_9-XiQ3n9-fLjxdl1qaqKpJKorpN1U2nJeVP3NXCuc0bdUak1ZwDAWtZ0XFHCWphLTZlsedXpuqWMEVUdFq92_66CvxshJrH0Y8g3iILOadVixmibXe3OpYKPMYAWyqRthBSksYJgsalELMW2ErGpROwqyWz1F7sKZpBh_R_qdEdBDj8ZCCIqA05BbwKoJHpv_sk_Agvbro4 |
| CitedBy_id | crossref_primary_10_1007_s00033_023_01981_3 crossref_primary_10_1088_1674_1056_adceff crossref_primary_10_3390_axioms13020092 crossref_primary_10_1007_s12346_022_00730_7 crossref_primary_10_1007_s40819_022_01359_5 crossref_primary_10_1007_s12596_024_02171_8 crossref_primary_10_1007_s12596_024_02172_7 crossref_primary_10_1016_j_aml_2022_108294 crossref_primary_10_1007_s11082_023_04848_z crossref_primary_10_1007_s40819_022_01474_3 crossref_primary_10_1007_s12596_024_01937_4 crossref_primary_10_1007_s12596_024_01922_x crossref_primary_10_1038_s41598_025_03938_0 crossref_primary_10_1142_S0217984924504578 crossref_primary_10_1007_s11071_022_07252_6 crossref_primary_10_1016_j_wavemoti_2023_103246 crossref_primary_10_1140_epjp_s13360_022_03301_6 crossref_primary_10_1016_j_physd_2024_134456 crossref_primary_10_1209_0295_5075_acde05 crossref_primary_10_1007_s12346_023_00775_2 crossref_primary_10_1007_s11071_023_09103_4 crossref_primary_10_3390_math10214151 crossref_primary_10_1007_s12596_024_02005_7 |
| Cites_doi | 10.1016/j.rinp.2021.104043 10.1002/mma.6914 10.1007/s13324-021-00522-3 10.1016/j.cnsns.2014.08.031 10.1016/j.wavemoti.2021.102719 10.3934/mbe.2021164 10.1007/s13324-020-00414-y 10.1016/j.cnsns.2020.105628 10.1070/RM1990v045n04ABEH002377 10.1016/j.cam.2018.11.018 10.1002/mma.1337 10.1016/j.aml.2019.07.007 10.1017/S0022112079000835 10.4208/eajam.130219.290819 10.1016/j.cam.2018.11.008 10.1016/j.physd.2020.132411 10.1007/s40840-018-0668-z 10.3390/sym12040566 10.1142/S0217984921501165 10.1016/j.ijleo.2021.166985 10.1002/mma.5792 10.1016/j.camwa.2017.06.049 10.1002/mma.4690 10.1002/mma.5964 10.1088/0305-4470/31/50/013 10.2991/jnmp.2008.15.s3.17 10.1016/j.aml.2019.106056 10.1515/jaa-2019-0022 10.1007/s11071-016-2755-8 10.1088/0305-4470/33/10/312 10.3390/math9091009 10.1108/HFF-04-2020-0235 10.1016/j.cnsns.2020.105260 10.1016/j.cjph.2019.11.005 10.1007/s11071-020-06068-6 10.1016/j.cnsns.2009.11.014 10.1002/mma.6931 10.1016/j.ijleo.2020.165237 10.1016/j.matcom.2021.03.012 10.1016/j.ijleo.2020.165752 10.1088/1402-4896/ab4b30 10.1007/s11071-021-06357-8 10.1016/j.cnsns.2020.105612 10.1016/j.geomphys.2019.103508 10.1007/s11071-017-3581-3 10.1016/j.apm.2019.04.044 10.1142/S0217984921500603 10.1002/mma.1339 10.1007/s11071-016-2997-5 10.1088/1674-1056/aba9c4 10.1002/mma.6105 10.1088/1572-9494/abe03a 10.1108/HFF-01-2020-0015 10.1016/j.cnsns.2019.105135 10.1007/s13324-019-00338-2 10.1007/s11785-020-00997-1 10.1016/j.aml.2015.03.019 |
| ContentType | Journal Article |
| Copyright | 2021 Elsevier B.V. Copyright Elsevier Science Ltd. Mar 2022 |
| Copyright_xml | – notice: 2021 Elsevier B.V. – notice: Copyright Elsevier Science Ltd. Mar 2022 |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.cnsns.2021.106072 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences |
| EISSN | 1878-7274 |
| ExternalDocumentID | 10_1016_j_cnsns_2021_106072 S1007570421003841 |
| GroupedDBID | --K --M -01 -0A -0I -0Y -SA -S~ .~1 0R~ 1B1 1RT 1~. 1~5 29F 4.4 457 4G. 5GY 5VR 5VS 7-5 71M 8P~ 92M 9D9 9DA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABAOU ABFNM ABJNI ABMAC ABNEU ABXDB ABYKQ ACAZW ACDAQ ACFVG ACGFS ACNNM ACRLP ADBBV ADEZE ADGUI ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AFUIB AGHFR AGUBO AGYEJ AHJVU AIEXJ AIGVJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CAJEA CAJUS CCEZO CCVFK CHBEP CS3 CUBFJ DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FA0 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA JUIAU KOM M41 MHUIS MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q-- Q-0 Q38 R-A R-I R2- RIG ROL RPZ RT1 RT9 S.. SDF SDG SES SEW SPC SPCBC SPD SSQ SST SSW SSZ T5K T8Q T8Y U1F U1G U5A U5I U5K UHS ~G- ~LA 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD AFXIZ AGCQF AGRNS BNPGV SSH |
| ID | FETCH-LOGICAL-c331t-1cbba483fa7784d4e77f695fb2aff75eee5958b7c2159e6af25a973bf492551c3 |
| ISICitedReferencesCount | 27 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000721368200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1007-5704 |
| IngestDate | Mon Jul 14 08:14:58 EDT 2025 Sat Nov 29 07:08:18 EST 2025 Tue Nov 18 22:23:37 EST 2025 Fri Feb 23 02:41:10 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Multiple exp-function algorithm Conservation laws 35C05 35G20 Similarity solutions A generalized (1+2)-dimensional Bogoyavlenskii–Kadomtsev–Petviashvili (BKP) equation 35C07 |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c331t-1cbba483fa7784d4e77f695fb2aff75eee5958b7c2159e6af25a973bf492551c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2623905529 |
| PQPubID | 2047477 |
| ParticipantIDs | proquest_journals_2623905529 crossref_citationtrail_10_1016_j_cnsns_2021_106072 crossref_primary_10_1016_j_cnsns_2021_106072 elsevier_sciencedirect_doi_10_1016_j_cnsns_2021_106072 |
| PublicationCentury | 2000 |
| PublicationDate | March 2022 2022-03-00 20220301 |
| PublicationDateYYYYMMDD | 2022-03-01 |
| PublicationDate_xml | – month: 03 year: 2022 text: March 2022 |
| PublicationDecade | 2020 |
| PublicationPlace | Amsterdam |
| PublicationPlace_xml | – name: Amsterdam |
| PublicationTitle | Communications in nonlinear science & numerical simulation |
| PublicationYear | 2022 |
| Publisher | Elsevier B.V Elsevier Science Ltd |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier Science Ltd |
| References | Liu, Zhou, Lü, Xu (b9) 2020; 224 Wazwaz, Mehanna (b11) 2021; 241 Gao, Zi, Yin, Ma, Lü (b50) 2017; 89 Estévez, Prada (b58) 2008; 15 Xu, Tian, Peng (b41) 2020; 43 Wang, Fang (b59) 2020; 95 Wazwaz (b19) 2021; 225 Bruzón, Recio, de la Rosa, Gandarias (b30) 2018; 41 Osman, Baleanu, Adem, Hosseini, Mirzazadeh, Eslami (b32) 2020; 63 Hua, Guo, Ma, Lü (b47) 2019; 74 Chen, Yin, Ma, Lü (b49) 2019; 9 Yasar (b51) 2010; 15 Muatjetjeja, Mbusi, Adem (b31) 2020; 12 He, Lü, Li (b4) 2021; 11 Ablowitz, Segur (b55) 1979; 92 Ma, Wazwaz, Li (b12) 2021; 187 Feng, Tian, Zhang (b43) 2020; 43 Malik, Almusawa, Kumar, Wazwaz, Osman (b15) 2021; 23 Wang, Wazwaz (b18) 2021; 31 Ma, Yong, Lü (b1) 2021; 103 Rosa, Camacho, Bruzón, Gandarias (b27) 2019; 354 Yu, Toda, Fukuyama (b54) 1998; 31 Wang, Wazwaz (b13) 2021; 73 Liu, Wazwaz (b16) 2021; 44 Bogoyavlenskii (b56) 1990; 45 Zhang, Tian, Yang (b37) 2021; 11 San, Yasar (b52) 2015; 22 Huang, Zhou, Lü, Wang (b6) 2021; 35 Peng, Tian, Zhang (b38) 2020; 14 Lü, Ma (b46) 2016; 85 Muatjetjeja, Mbusi, Adem (b36) 2020; 12 Peng, Tian, Wang, Zhang, Fang (b39) 2019; 146 Adem, Muatjetjeja (b35) 2015; 48 Yin, Chen, Lü (b8) 2020; 29 Chulián, Martinez-Rubio, Gandarias, Rosa (b22) 2021; 18 Bruzón, Gandarias (b29) 2018; 41 Chulián, Rosa, Gandarias (b25) 2020; 43 Muatjetjeja, Adem, Mbusi (b33) 2019; 25 Bruzón, Gambino, Gandarias (b21) 2021; 9 Zhou, Lü, Xu (b5) 2021; 35 Adem (b34) 2017; 74 Peng, Tian, Zhang, Fang (b44) 2019; 42 Estévez, Hernáez (b57) 2000; 33 Tian (b40) 2020; 100 Lü, Hua, Chen, Tang (b3) 2021; 95 Wazwaz (b20) 2021; 34 Xia, Zhao, Lü (b10) 2020; 90 Zhang, Tian, Peng, Zhang, Yan (b42) 2020; 10 Estévez, Lejarreta, Sardón (b53) 2017; 87 Lü, Chen (b7) 2021; 103 Chen, Lü, Ma (b45) 2020; 83 Ma, Wazwaz, Li (b14) 2021; 104 Bruzón, Gandarias, Torrisi, Tracinà (b23) 2021; 44 Rosa, Chulián, Gandarias, Tracinà (b24) 2020; 405 Chulián, Rosa, Gandarias (b26) 2019; 354 Xu, Ruan, Yu-Zhang, Lü (b48) 2020; 99 Chen, Lü, Tang (b2) 2021; 95 Gandarias, Bruzon (b28) 2018; 41 Wazwaz (b17) 2021; 31 Chen (10.1016/j.cnsns.2021.106072_b2) 2021; 95 Bruzón (10.1016/j.cnsns.2021.106072_b30) 2018; 41 Liu (10.1016/j.cnsns.2021.106072_b16) 2021; 44 Wang (10.1016/j.cnsns.2021.106072_b18) 2021; 31 Lü (10.1016/j.cnsns.2021.106072_b3) 2021; 95 Adem (10.1016/j.cnsns.2021.106072_b35) 2015; 48 Bogoyavlenskii (10.1016/j.cnsns.2021.106072_b56) 1990; 45 Bruzón (10.1016/j.cnsns.2021.106072_b29) 2018; 41 Chen (10.1016/j.cnsns.2021.106072_b45) 2020; 83 Rosa (10.1016/j.cnsns.2021.106072_b24) 2020; 405 Ablowitz (10.1016/j.cnsns.2021.106072_b55) 1979; 92 Ma (10.1016/j.cnsns.2021.106072_b14) 2021; 104 Ma (10.1016/j.cnsns.2021.106072_b1) 2021; 103 Gao (10.1016/j.cnsns.2021.106072_b50) 2017; 89 Peng (10.1016/j.cnsns.2021.106072_b38) 2020; 14 Zhou (10.1016/j.cnsns.2021.106072_b5) 2021; 35 Muatjetjeja (10.1016/j.cnsns.2021.106072_b36) 2020; 12 Estévez (10.1016/j.cnsns.2021.106072_b57) 2000; 33 Wang (10.1016/j.cnsns.2021.106072_b59) 2020; 95 Xia (10.1016/j.cnsns.2021.106072_b10) 2020; 90 Hua (10.1016/j.cnsns.2021.106072_b47) 2019; 74 Peng (10.1016/j.cnsns.2021.106072_b44) 2019; 42 Wazwaz (10.1016/j.cnsns.2021.106072_b17) 2021; 31 Chulián (10.1016/j.cnsns.2021.106072_b26) 2019; 354 Lü (10.1016/j.cnsns.2021.106072_b7) 2021; 103 Estévez (10.1016/j.cnsns.2021.106072_b58) 2008; 15 Zhang (10.1016/j.cnsns.2021.106072_b42) 2020; 10 Wazwaz (10.1016/j.cnsns.2021.106072_b11) 2021; 241 Rosa (10.1016/j.cnsns.2021.106072_b27) 2019; 354 Huang (10.1016/j.cnsns.2021.106072_b6) 2021; 35 Liu (10.1016/j.cnsns.2021.106072_b9) 2020; 224 Osman (10.1016/j.cnsns.2021.106072_b32) 2020; 63 Chulián (10.1016/j.cnsns.2021.106072_b22) 2021; 18 Yin (10.1016/j.cnsns.2021.106072_b8) 2020; 29 Yasar (10.1016/j.cnsns.2021.106072_b51) 2010; 15 Wang (10.1016/j.cnsns.2021.106072_b13) 2021; 73 Wazwaz (10.1016/j.cnsns.2021.106072_b20) 2021; 34 Bruzón (10.1016/j.cnsns.2021.106072_b23) 2021; 44 Xu (10.1016/j.cnsns.2021.106072_b48) 2020; 99 Feng (10.1016/j.cnsns.2021.106072_b43) 2020; 43 San (10.1016/j.cnsns.2021.106072_b52) 2015; 22 Gandarias (10.1016/j.cnsns.2021.106072_b28) 2018; 41 Bruzón (10.1016/j.cnsns.2021.106072_b21) 2021; 9 Muatjetjeja (10.1016/j.cnsns.2021.106072_b33) 2019; 25 Yu (10.1016/j.cnsns.2021.106072_b54) 1998; 31 Ma (10.1016/j.cnsns.2021.106072_b12) 2021; 187 Chen (10.1016/j.cnsns.2021.106072_b49) 2019; 9 Malik (10.1016/j.cnsns.2021.106072_b15) 2021; 23 Lü (10.1016/j.cnsns.2021.106072_b46) 2016; 85 Wazwaz (10.1016/j.cnsns.2021.106072_b19) 2021; 225 Estévez (10.1016/j.cnsns.2021.106072_b53) 2017; 87 Muatjetjeja (10.1016/j.cnsns.2021.106072_b31) 2020; 12 Xu (10.1016/j.cnsns.2021.106072_b41) 2020; 43 Peng (10.1016/j.cnsns.2021.106072_b39) 2019; 146 Tian (10.1016/j.cnsns.2021.106072_b40) 2020; 100 He (10.1016/j.cnsns.2021.106072_b4) 2021; 11 Zhang (10.1016/j.cnsns.2021.106072_b37) 2021; 11 Chulián (10.1016/j.cnsns.2021.106072_b25) 2020; 43 Adem (10.1016/j.cnsns.2021.106072_b34) 2017; 74 |
| References_xml | – volume: 12 year: 2020 ident: b36 article-title: Noether symmetries of a generalized coupled Lane-Emden-Klein-Gordon-Fock system with central symmetry publication-title: Symmetry – volume: 25 start-page: 211 year: 2019 end-page: 217 ident: b33 article-title: Traveling wave solutions and conservation laws of a generalized Kudryashov-Sinelshchikov equation publication-title: J Appl Anal – volume: 14 start-page: 38 year: 2020 ident: b38 article-title: Initial value problem for the pair transition coupled nonlinear Schrödinger equations via the Riemann-Hilbert method publication-title: Complex Anal Oper Theory – volume: 103 year: 2021 ident: b1 article-title: Soliton solutions to the B-type Kadomtsev–Petviashvili equation under general dispersion relations publication-title: Wave Motion – volume: 31 start-page: 10181 year: 1998 end-page: 10186 ident: b54 article-title: N-soliton solutions to a (2 + 1)-dimensional integrable equation publication-title: J Phys A: Math Gen – volume: 85 start-page: 1217 year: 2016 end-page: 1222 ident: b46 article-title: Study of lump dynamics based on a dimensionally reduced Hirota bilinear equation publication-title: Nonlinear Dynam – volume: 43 start-page: 865 year: 2020 end-page: 880 ident: b41 article-title: Riemann-Hilbert approach for multisoliton solutions of generalized coupled fourth-order nonlinear Schrödinger equations publication-title: Math Methods Appl Sci – volume: 11 start-page: 86 year: 2021 ident: b37 article-title: The Riemann-Hilbert approach for the focusing Hirota equation with single and double poles publication-title: Anal Math Phys – volume: 18 start-page: 3291 year: 2021 end-page: 3312 ident: b22 article-title: Lie point symmetries for generalised Fisher’s equations describing tumour dynamics publication-title: Math Biosci Eng – volume: 31 start-page: 174 year: 2021 end-page: 185 ident: b17 article-title: A variety of completely integrable Calogero–Bogoyavlenskii–Schiff equations with time-dependent coefficients publication-title: Internat J Numer Methods Heat Fluid Flow – volume: 225 year: 2021 ident: b19 article-title: Bright and dark optical solitons for (3+1)-dimensional Schrödinger equation with cubic–quintic-septic nonlinearities publication-title: Optik – volume: 74 start-page: 184 year: 2019 end-page: 198 ident: b47 article-title: Interaction behavior associated with a generalized (2+1)-dimensional Hirota bilinear equation for nonlinear waves publication-title: Appl Math Model – volume: 43 start-page: 141 year: 2020 end-page: 155 ident: b43 article-title: Bäcklund transformations, nonlocal symmetries and soliton-cnoidal interaction solutions of the (2 + 1)-dimensional Boussinesq equation publication-title: Bull Malays Math Sci Soc – volume: 41 start-page: 1631 year: 2018 end-page: 1641 ident: b30 article-title: Local conservation laws, symmetries, and exact solutions for a Kudryashov-Sinelshchikov equation publication-title: Math Methods Appl Sci – volume: 29 year: 2020 ident: b8 article-title: Localized characteristics of lump and interaction solutions to two extended Jimbo-Miwa equations publication-title: Chin Phys B – volume: 35 year: 2021 ident: b6 article-title: Dispersive optical solitons for the Schrödinger-Hirota equation in optical fibers publication-title: Modern Phys Lett B – volume: 44 start-page: 2050 year: 2021 end-page: 2058 ident: b23 article-title: Symmetries and special solutions of a parabolic chemotaxis system publication-title: Math Methods Appl Sci – volume: 405 year: 2020 ident: b24 article-title: Application of Lie point symmetries to the resolution of an interface problem in a generalized Fisher equation publication-title: Physica D – volume: 9 year: 2021 ident: b21 article-title: Generalized Camassa–Holm equations: Symmetry, conservation laws and regular pulse and front solutions publication-title: Mathematics – volume: 22 start-page: 1297 year: 2015 end-page: 1304 ident: b52 article-title: On the conservation laws of Derrida-Lebowitz-Speer-Spohn equation publication-title: Commun Nonlinear Sci Numer Simul – volume: 34 year: 2021 ident: b20 article-title: On integrability of an extended Bogoyavlenskii-Kadomtsev-Petviashvili equation: Multiple soliton solutions publication-title: Int J Numer Modelling, Electron Netw Devices Fields – volume: 83 year: 2020 ident: b45 article-title: Bäcklund transformation, exact solutions and interaction behaviour of the (3+1)-dimensional Hirota-Satsuma-Ito-like equation publication-title: Commun Nonlinear Sci Numer Simul – volume: 15 start-page: 3193 year: 2010 end-page: 3200 ident: b51 article-title: Conservation laws for a class of soil water equations publication-title: Commun Nonlinear Sci Numer Simul – volume: 11 year: 2021 ident: b4 article-title: Bäcklund transformation, Pfaffian, Wronskian and Grammian solutions to the (3 + 1 ) -dimensional generalized Kadomtsev–Petviashvili equation publication-title: Anal Math Phys – volume: 48 start-page: 109 year: 2015 end-page: 117 ident: b35 article-title: Conservation laws and exact solutions for a 2D Zakharov-Kuznetsov equation publication-title: Appl Math Lett – volume: 23 year: 2021 ident: b15 article-title: A (2+1)-dimensional Kadomtsev–Petviashvili equation with competing dispersion effect: Painlevé analysis, dynamical behavior and invariant solutions publication-title: Results Phys – volume: 31 start-page: 541 year: 2021 end-page: 547 ident: b18 article-title: Symmetry and Painlevé analysis for the extended Sakovich equation publication-title: Internat J Numer Methods Heat Fluid Flow – volume: 44 start-page: 2200 year: 2021 end-page: 2208 ident: b16 article-title: Breather wave and lump-type solutions of new (3 + 1)-dimensional Boiti–Leon–Manna–Pempinelli equation in incompressible fluid publication-title: Math Methods Appl Sci – volume: 9 start-page: 2329 year: 2019 end-page: 2344 ident: b49 article-title: Abundant exact solutions and interaction phenomena of the (2 + 1)-dimensional YTSF equation publication-title: Anal Math Phys – volume: 42 start-page: 6865 year: 2019 end-page: 6877 ident: b44 article-title: Rational and semi-rational solutions of a nonlocal (2 + 1)-dimensional nonlinear Schrödinger equation publication-title: Math Methods Appl Sci – volume: 92 start-page: 691 year: 1979 end-page: 715 ident: b55 article-title: On the evolution of packets of water waves publication-title: J Fluid Mech – volume: 45 start-page: 1 year: 1990 end-page: 86 ident: b56 article-title: Breaking solitons in 2 + 1-dimensional integrable equations publication-title: Russian Math Surveys – volume: 89 start-page: 2233 year: 2017 end-page: 2240 ident: b50 article-title: Bäcklund transformation, multiple wave solutions and lump solutions to a (3 + 1)-dimensional nonlinear evolution equation publication-title: Nonlinear Dynam – volume: 41 start-page: 5851 year: 2018 end-page: 5857 ident: b29 article-title: Traveling wave solutions of the K(m, n) equation with generalized evolution publication-title: Math Methods Appl Sci – volume: 41 start-page: 5840 year: 2018 end-page: 5850 ident: b28 article-title: Traveling wave solutions for a generalized Ostrovsky equation publication-title: Math Methods Appl Sci – volume: 354 start-page: 689 year: 2019 end-page: 698 ident: b26 article-title: Reductions and symmetries for a generalized Fisher equation with a diffusion term dependent on density and space publication-title: J Comput Appl Math – volume: 12 year: 2020 ident: b31 article-title: Noether symmetries of a generalized coupled Lane-Emden-Klein-Gordon-Fock system with central symmetry publication-title: Symmetry – volume: 100 year: 2020 ident: b40 article-title: Lie symmetry analysis, conservation laws and solitary wave solutions to a fourth-order nonlinear generalized Boussinesq water wave equation publication-title: Appl Math Lett – volume: 90 year: 2020 ident: b10 article-title: Predictability, fast calculation and simulation for the interaction solutions to the cylindrical Kadomtsev-Petviashvili equation publication-title: Commun Nonlinear Sci Numer Simul – volume: 146 year: 2019 ident: b39 article-title: Riemann-Hilbert method and multi-soliton solutions for three-component coupled nonlinear Schrödinger equations publication-title: J Geom Phys – volume: 95 year: 2020 ident: b59 article-title: Various kinds of high-order solitons to the Bogoyavlenskii-Kadomtsev-Petviashvili equation publication-title: Phys Scr – volume: 224 year: 2020 ident: b9 article-title: Dynamic behaviors of optical solitons for Fokas-Lenells equation in optical fiber publication-title: Optik – volume: 74 start-page: 1897 year: 2017 end-page: 1902 ident: b34 article-title: Symbolic computation on exact solutions of a coupled Kadomtsev–Petviashvili equation: Lie symmetry analysis and extended tanh method publication-title: Comput Math Appl – volume: 73 year: 2021 ident: b13 article-title: Perturbation, symmetry analysis, Bäcklund and reciprocal transformation for the extended Boussinesq equation in fluid mechanics publication-title: Commun Theor Phys – volume: 187 start-page: 505 year: 2021 end-page: 519 ident: b12 article-title: A new (3+1)-dimensional Kadomtsev–Petviashvili equation and its integrability, multiple-solitons, breathers and lump waves publication-title: Math Comput Simulation – volume: 33 start-page: 2131 year: 2000 end-page: 2143 ident: b57 article-title: Non-isospectral problem in (2 + 1) dimensions publication-title: J Phys A: Math Gen – volume: 95 year: 2021 ident: b2 article-title: Novel evolutionary behaviors of the mixed solutions to a generalized Burgers equation with variable coefficients publication-title: Commun Nonlinear Sci Numer Simul – volume: 241 year: 2021 ident: b11 article-title: Bright and dark optical solitons for a new (3+1)-dimensional nonlinear Schrödinger equation publication-title: Optik – volume: 43 start-page: 2076 year: 2020 end-page: 2084 ident: b25 article-title: Symmetries and solutions for a Fisher equation with a proliferation term involving tumor development publication-title: Math Methods Appl Sci – volume: 354 start-page: 545 year: 2019 end-page: 550 ident: b27 article-title: Conservation laws, symmetries, and exact solutions of the classical Burgers–Fisher equation in two dimensions publication-title: J Comput Appl Math – volume: 103 start-page: 947 year: 2021 end-page: 977 ident: b7 article-title: Interaction solutions to nonlinear partial differential equations via Hirota bilinear forms: one-lump-multi-stripe and one-lump-multi-soliton types publication-title: Nonlinear Dynam – volume: 95 year: 2021 ident: b3 article-title: Integrability characteristics of a novel (2+1)-dimensional nonlinear model: Painlevé analysis, soliton solutions, Bäcklund transformation, Lax pair and infinitely many conservation laws publication-title: Commun Nonlinear Sci Numer Simul – volume: 35 year: 2021 ident: b5 article-title: Symbolic computation study on exact solutions to a generalized (3+1)-dimensional Kadomtsev-Petviashvili-type equation publication-title: Modern Phys Lett B – volume: 15 start-page: 166 year: 2008 end-page: 175 ident: b58 article-title: Lump solutions for PDE’s: Algorithmic construction and classification publication-title: J Nonlinear Math Phys – volume: 99 year: 2020 ident: b48 article-title: Multi-exponential wave solutions to two extended Jimbo-Miwa equations and the resonance behavior publication-title: Appl Math Lett – volume: 87 start-page: 13 year: 2017 end-page: 23 ident: b53 article-title: Symmetry computation and reduction of a wave model in 2+ 1 dimensions publication-title: Nonlinear Dynam – volume: 104 start-page: 1581 year: 2021 end-page: 1594 ident: b14 article-title: New extended Kadomtsev–Petviashvili equation: multiple soliton solutions, breather, lump and interaction solutions publication-title: Nonlinear Dynam – volume: 63 start-page: 122 year: 2020 end-page: 129 ident: b32 article-title: Double-wave solutions and Lie symmetry analysis to the (2 + 1)-dimensional coupled Burgers equations publication-title: Chinese J Phys – volume: 10 start-page: 243 year: 2020 end-page: 255 ident: b42 article-title: The dynamics of lump, lumpoff and rogue wave solutions of (2+1)-dimensional Hirota-Satsuma-ito equations publication-title: East Asian J Appl Math – volume: 23 year: 2021 ident: 10.1016/j.cnsns.2021.106072_b15 article-title: A (2+1)-dimensional Kadomtsev–Petviashvili equation with competing dispersion effect: Painlevé analysis, dynamical behavior and invariant solutions publication-title: Results Phys doi: 10.1016/j.rinp.2021.104043 – volume: 44 start-page: 2050 issue: 2 year: 2021 ident: 10.1016/j.cnsns.2021.106072_b23 article-title: Symmetries and special solutions of a parabolic chemotaxis system publication-title: Math Methods Appl Sci doi: 10.1002/mma.6914 – volume: 11 start-page: 86 issue: 2 year: 2021 ident: 10.1016/j.cnsns.2021.106072_b37 article-title: The Riemann-Hilbert approach for the focusing Hirota equation with single and double poles publication-title: Anal Math Phys doi: 10.1007/s13324-021-00522-3 – volume: 22 start-page: 1297 issue: 1–3 year: 2015 ident: 10.1016/j.cnsns.2021.106072_b52 article-title: On the conservation laws of Derrida-Lebowitz-Speer-Spohn equation publication-title: Commun Nonlinear Sci Numer Simul doi: 10.1016/j.cnsns.2014.08.031 – volume: 103 year: 2021 ident: 10.1016/j.cnsns.2021.106072_b1 article-title: Soliton solutions to the B-type Kadomtsev–Petviashvili equation under general dispersion relations publication-title: Wave Motion doi: 10.1016/j.wavemoti.2021.102719 – volume: 18 start-page: 3291 issue: 4 year: 2021 ident: 10.1016/j.cnsns.2021.106072_b22 article-title: Lie point symmetries for generalised Fisher’s equations describing tumour dynamics publication-title: Math Biosci Eng doi: 10.3934/mbe.2021164 – volume: 11 issue: 1 year: 2021 ident: 10.1016/j.cnsns.2021.106072_b4 article-title: Bäcklund transformation, Pfaffian, Wronskian and Grammian solutions to the (3 + 1 ) -dimensional generalized Kadomtsev–Petviashvili equation publication-title: Anal Math Phys doi: 10.1007/s13324-020-00414-y – volume: 95 year: 2021 ident: 10.1016/j.cnsns.2021.106072_b2 article-title: Novel evolutionary behaviors of the mixed solutions to a generalized Burgers equation with variable coefficients publication-title: Commun Nonlinear Sci Numer Simul doi: 10.1016/j.cnsns.2020.105628 – volume: 45 start-page: 1 issue: 4 year: 1990 ident: 10.1016/j.cnsns.2021.106072_b56 article-title: Breaking solitons in 2 + 1-dimensional integrable equations publication-title: Russian Math Surveys doi: 10.1070/RM1990v045n04ABEH002377 – volume: 354 start-page: 689 year: 2019 ident: 10.1016/j.cnsns.2021.106072_b26 article-title: Reductions and symmetries for a generalized Fisher equation with a diffusion term dependent on density and space publication-title: J Comput Appl Math doi: 10.1016/j.cam.2018.11.018 – volume: 41 start-page: 5840 issue: 15 year: 2018 ident: 10.1016/j.cnsns.2021.106072_b28 article-title: Traveling wave solutions for a generalized Ostrovsky equation publication-title: Math Methods Appl Sci doi: 10.1002/mma.1337 – volume: 99 year: 2020 ident: 10.1016/j.cnsns.2021.106072_b48 article-title: Multi-exponential wave solutions to two extended Jimbo-Miwa equations and the resonance behavior publication-title: Appl Math Lett doi: 10.1016/j.aml.2019.07.007 – volume: 92 start-page: 691 issue: 4 year: 1979 ident: 10.1016/j.cnsns.2021.106072_b55 article-title: On the evolution of packets of water waves publication-title: J Fluid Mech doi: 10.1017/S0022112079000835 – volume: 10 start-page: 243 issue: 2 year: 2020 ident: 10.1016/j.cnsns.2021.106072_b42 article-title: The dynamics of lump, lumpoff and rogue wave solutions of (2+1)-dimensional Hirota-Satsuma-ito equations publication-title: East Asian J Appl Math doi: 10.4208/eajam.130219.290819 – volume: 354 start-page: 545 year: 2019 ident: 10.1016/j.cnsns.2021.106072_b27 article-title: Conservation laws, symmetries, and exact solutions of the classical Burgers–Fisher equation in two dimensions publication-title: J Comput Appl Math doi: 10.1016/j.cam.2018.11.008 – volume: 405 year: 2020 ident: 10.1016/j.cnsns.2021.106072_b24 article-title: Application of Lie point symmetries to the resolution of an interface problem in a generalized Fisher equation publication-title: Physica D doi: 10.1016/j.physd.2020.132411 – volume: 43 start-page: 141 issue: 1 year: 2020 ident: 10.1016/j.cnsns.2021.106072_b43 article-title: Bäcklund transformations, nonlocal symmetries and soliton-cnoidal interaction solutions of the (2 + 1)-dimensional Boussinesq equation publication-title: Bull Malays Math Sci Soc doi: 10.1007/s40840-018-0668-z – volume: 12 issue: 4 year: 2020 ident: 10.1016/j.cnsns.2021.106072_b36 article-title: Noether symmetries of a generalized coupled Lane-Emden-Klein-Gordon-Fock system with central symmetry publication-title: Symmetry doi: 10.3390/sym12040566 – volume: 35 issue: 6 year: 2021 ident: 10.1016/j.cnsns.2021.106072_b5 article-title: Symbolic computation study on exact solutions to a generalized (3+1)-dimensional Kadomtsev-Petviashvili-type equation publication-title: Modern Phys Lett B doi: 10.1142/S0217984921501165 – volume: 241 year: 2021 ident: 10.1016/j.cnsns.2021.106072_b11 article-title: Bright and dark optical solitons for a new (3+1)-dimensional nonlinear Schrödinger equation publication-title: Optik doi: 10.1016/j.ijleo.2021.166985 – volume: 42 start-page: 6865 issue: 18 year: 2019 ident: 10.1016/j.cnsns.2021.106072_b44 article-title: Rational and semi-rational solutions of a nonlocal (2 + 1)-dimensional nonlinear Schrödinger equation publication-title: Math Methods Appl Sci doi: 10.1002/mma.5792 – volume: 12 issue: 4 year: 2020 ident: 10.1016/j.cnsns.2021.106072_b31 article-title: Noether symmetries of a generalized coupled Lane-Emden-Klein-Gordon-Fock system with central symmetry publication-title: Symmetry doi: 10.3390/sym12040566 – volume: 74 start-page: 1897 issue: 8 year: 2017 ident: 10.1016/j.cnsns.2021.106072_b34 article-title: Symbolic computation on exact solutions of a coupled Kadomtsev–Petviashvili equation: Lie symmetry analysis and extended tanh method publication-title: Comput Math Appl doi: 10.1016/j.camwa.2017.06.049 – volume: 41 start-page: 1631 issue: 4 year: 2018 ident: 10.1016/j.cnsns.2021.106072_b30 article-title: Local conservation laws, symmetries, and exact solutions for a Kudryashov-Sinelshchikov equation publication-title: Math Methods Appl Sci doi: 10.1002/mma.4690 – volume: 43 start-page: 865 issue: 2 year: 2020 ident: 10.1016/j.cnsns.2021.106072_b41 article-title: Riemann-Hilbert approach for multisoliton solutions of generalized coupled fourth-order nonlinear Schrödinger equations publication-title: Math Methods Appl Sci doi: 10.1002/mma.5964 – volume: 31 start-page: 10181 issue: 50 year: 1998 ident: 10.1016/j.cnsns.2021.106072_b54 article-title: N-soliton solutions to a (2 + 1)-dimensional integrable equation publication-title: J Phys A: Math Gen doi: 10.1088/0305-4470/31/50/013 – volume: 15 start-page: 166 issue: SUPPL.3 year: 2008 ident: 10.1016/j.cnsns.2021.106072_b58 article-title: Lump solutions for PDE’s: Algorithmic construction and classification publication-title: J Nonlinear Math Phys doi: 10.2991/jnmp.2008.15.s3.17 – volume: 100 year: 2020 ident: 10.1016/j.cnsns.2021.106072_b40 article-title: Lie symmetry analysis, conservation laws and solitary wave solutions to a fourth-order nonlinear generalized Boussinesq water wave equation publication-title: Appl Math Lett doi: 10.1016/j.aml.2019.106056 – volume: 25 start-page: 211 issue: 2 year: 2019 ident: 10.1016/j.cnsns.2021.106072_b33 article-title: Traveling wave solutions and conservation laws of a generalized Kudryashov-Sinelshchikov equation publication-title: J Appl Anal doi: 10.1515/jaa-2019-0022 – volume: 85 start-page: 1217 issue: 2 year: 2016 ident: 10.1016/j.cnsns.2021.106072_b46 article-title: Study of lump dynamics based on a dimensionally reduced Hirota bilinear equation publication-title: Nonlinear Dynam doi: 10.1007/s11071-016-2755-8 – volume: 33 start-page: 2131 issue: 10 year: 2000 ident: 10.1016/j.cnsns.2021.106072_b57 article-title: Non-isospectral problem in (2 + 1) dimensions publication-title: J Phys A: Math Gen doi: 10.1088/0305-4470/33/10/312 – volume: 9 issue: 9 year: 2021 ident: 10.1016/j.cnsns.2021.106072_b21 article-title: Generalized Camassa–Holm equations: Symmetry, conservation laws and regular pulse and front solutions publication-title: Mathematics doi: 10.3390/math9091009 – volume: 31 start-page: 541 issue: 1 year: 2021 ident: 10.1016/j.cnsns.2021.106072_b18 article-title: Symmetry and Painlevé analysis for the extended Sakovich equation publication-title: Internat J Numer Methods Heat Fluid Flow doi: 10.1108/HFF-04-2020-0235 – volume: 90 year: 2020 ident: 10.1016/j.cnsns.2021.106072_b10 article-title: Predictability, fast calculation and simulation for the interaction solutions to the cylindrical Kadomtsev-Petviashvili equation publication-title: Commun Nonlinear Sci Numer Simul doi: 10.1016/j.cnsns.2020.105260 – volume: 63 start-page: 122 year: 2020 ident: 10.1016/j.cnsns.2021.106072_b32 article-title: Double-wave solutions and Lie symmetry analysis to the (2 + 1)-dimensional coupled Burgers equations publication-title: Chinese J Phys doi: 10.1016/j.cjph.2019.11.005 – volume: 103 start-page: 947 issue: 1 year: 2021 ident: 10.1016/j.cnsns.2021.106072_b7 article-title: Interaction solutions to nonlinear partial differential equations via Hirota bilinear forms: one-lump-multi-stripe and one-lump-multi-soliton types publication-title: Nonlinear Dynam doi: 10.1007/s11071-020-06068-6 – volume: 15 start-page: 3193 issue: 10 year: 2010 ident: 10.1016/j.cnsns.2021.106072_b51 article-title: Conservation laws for a class of soil water equations publication-title: Commun Nonlinear Sci Numer Simul doi: 10.1016/j.cnsns.2009.11.014 – volume: 44 start-page: 2200 issue: 2 year: 2021 ident: 10.1016/j.cnsns.2021.106072_b16 article-title: Breather wave and lump-type solutions of new (3 + 1)-dimensional Boiti–Leon–Manna–Pempinelli equation in incompressible fluid publication-title: Math Methods Appl Sci doi: 10.1002/mma.6931 – volume: 224 year: 2020 ident: 10.1016/j.cnsns.2021.106072_b9 article-title: Dynamic behaviors of optical solitons for Fokas-Lenells equation in optical fiber publication-title: Optik doi: 10.1016/j.ijleo.2020.165237 – volume: 187 start-page: 505 year: 2021 ident: 10.1016/j.cnsns.2021.106072_b12 article-title: A new (3+1)-dimensional Kadomtsev–Petviashvili equation and its integrability, multiple-solitons, breathers and lump waves publication-title: Math Comput Simulation doi: 10.1016/j.matcom.2021.03.012 – volume: 225 year: 2021 ident: 10.1016/j.cnsns.2021.106072_b19 article-title: Bright and dark optical solitons for (3+1)-dimensional Schrödinger equation with cubic–quintic-septic nonlinearities publication-title: Optik doi: 10.1016/j.ijleo.2020.165752 – volume: 95 issue: 3 year: 2020 ident: 10.1016/j.cnsns.2021.106072_b59 article-title: Various kinds of high-order solitons to the Bogoyavlenskii-Kadomtsev-Petviashvili equation publication-title: Phys Scr doi: 10.1088/1402-4896/ab4b30 – volume: 104 start-page: 1581 issue: 2 year: 2021 ident: 10.1016/j.cnsns.2021.106072_b14 article-title: New extended Kadomtsev–Petviashvili equation: multiple soliton solutions, breather, lump and interaction solutions publication-title: Nonlinear Dynam doi: 10.1007/s11071-021-06357-8 – volume: 95 year: 2021 ident: 10.1016/j.cnsns.2021.106072_b3 article-title: Integrability characteristics of a novel (2+1)-dimensional nonlinear model: Painlevé analysis, soliton solutions, Bäcklund transformation, Lax pair and infinitely many conservation laws publication-title: Commun Nonlinear Sci Numer Simul doi: 10.1016/j.cnsns.2020.105612 – volume: 146 year: 2019 ident: 10.1016/j.cnsns.2021.106072_b39 article-title: Riemann-Hilbert method and multi-soliton solutions for three-component coupled nonlinear Schrödinger equations publication-title: J Geom Phys doi: 10.1016/j.geomphys.2019.103508 – volume: 34 issue: 1 year: 2021 ident: 10.1016/j.cnsns.2021.106072_b20 article-title: On integrability of an extended Bogoyavlenskii-Kadomtsev-Petviashvili equation: Multiple soliton solutions publication-title: Int J Numer Modelling, Electron Netw Devices Fields – volume: 89 start-page: 2233 issue: 3 year: 2017 ident: 10.1016/j.cnsns.2021.106072_b50 article-title: Bäcklund transformation, multiple wave solutions and lump solutions to a (3 + 1)-dimensional nonlinear evolution equation publication-title: Nonlinear Dynam doi: 10.1007/s11071-017-3581-3 – volume: 74 start-page: 184 year: 2019 ident: 10.1016/j.cnsns.2021.106072_b47 article-title: Interaction behavior associated with a generalized (2+1)-dimensional Hirota bilinear equation for nonlinear waves publication-title: Appl Math Model doi: 10.1016/j.apm.2019.04.044 – volume: 35 issue: 3 year: 2021 ident: 10.1016/j.cnsns.2021.106072_b6 article-title: Dispersive optical solitons for the Schrödinger-Hirota equation in optical fibers publication-title: Modern Phys Lett B doi: 10.1142/S0217984921500603 – volume: 41 start-page: 5851 issue: 15 year: 2018 ident: 10.1016/j.cnsns.2021.106072_b29 article-title: Traveling wave solutions of the K(m, n) equation with generalized evolution publication-title: Math Methods Appl Sci doi: 10.1002/mma.1339 – volume: 87 start-page: 13 issue: 1 year: 2017 ident: 10.1016/j.cnsns.2021.106072_b53 article-title: Symmetry computation and reduction of a wave model in 2+ 1 dimensions publication-title: Nonlinear Dynam doi: 10.1007/s11071-016-2997-5 – volume: 29 issue: 12 year: 2020 ident: 10.1016/j.cnsns.2021.106072_b8 article-title: Localized characteristics of lump and interaction solutions to two extended Jimbo-Miwa equations publication-title: Chin Phys B doi: 10.1088/1674-1056/aba9c4 – volume: 43 start-page: 2076 issue: 4 year: 2020 ident: 10.1016/j.cnsns.2021.106072_b25 article-title: Symmetries and solutions for a Fisher equation with a proliferation term involving tumor development publication-title: Math Methods Appl Sci doi: 10.1002/mma.6105 – volume: 73 issue: 4 year: 2021 ident: 10.1016/j.cnsns.2021.106072_b13 article-title: Perturbation, symmetry analysis, Bäcklund and reciprocal transformation for the extended Boussinesq equation in fluid mechanics publication-title: Commun Theor Phys doi: 10.1088/1572-9494/abe03a – volume: 31 start-page: 174 issue: 1 year: 2021 ident: 10.1016/j.cnsns.2021.106072_b17 article-title: A variety of completely integrable Calogero–Bogoyavlenskii–Schiff equations with time-dependent coefficients publication-title: Internat J Numer Methods Heat Fluid Flow doi: 10.1108/HFF-01-2020-0015 – volume: 83 year: 2020 ident: 10.1016/j.cnsns.2021.106072_b45 article-title: Bäcklund transformation, exact solutions and interaction behaviour of the (3+1)-dimensional Hirota-Satsuma-Ito-like equation publication-title: Commun Nonlinear Sci Numer Simul doi: 10.1016/j.cnsns.2019.105135 – volume: 9 start-page: 2329 issue: 4 year: 2019 ident: 10.1016/j.cnsns.2021.106072_b49 article-title: Abundant exact solutions and interaction phenomena of the (2 + 1)-dimensional YTSF equation publication-title: Anal Math Phys doi: 10.1007/s13324-019-00338-2 – volume: 14 start-page: 38 issue: 3 year: 2020 ident: 10.1016/j.cnsns.2021.106072_b38 article-title: Initial value problem for the pair transition coupled nonlinear Schrödinger equations via the Riemann-Hilbert method publication-title: Complex Anal Oper Theory doi: 10.1007/s11785-020-00997-1 – volume: 48 start-page: 109 year: 2015 ident: 10.1016/j.cnsns.2021.106072_b35 article-title: Conservation laws and exact solutions for a 2D Zakharov-Kuznetsov equation publication-title: Appl Math Lett doi: 10.1016/j.aml.2015.03.019 |
| SSID | ssj0016954 |
| Score | 2.4743786 |
| Snippet | A generalized (1+2)-dimensional Bogoyavlenskii–Kadomtsev–Petviashvili (BKP) equation which is an augmentation of the Bogoyavlenskii–Schiff equation and... A generalized (1 + 2)-dimensional Bogoyavlenskii–Kadomtsev–Petviashvili (BKP) equation which is an augmentation of the Bogoyavlenskii–Schiff equation and... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 106072 |
| SubjectTerms | A generalized ([formula omitted])-dimensional Bogoyavlenskii–Kadomtsev–Petviashvili (BKP) equation Algorithms Conservation laws Exact solutions Fluid dynamics Multiple exp-function algorithm Nonlinear equations Plasmas (physics) Schrodinger equation Similarity solutions Water waves |
| Title | A generalized (1+2)-dimensional Bogoyavlenskii–Kadomtsev–Petviashvili (BKP) equation: Multiple exp-function algorithm; conservation laws; similarity solutions |
| URI | https://dx.doi.org/10.1016/j.cnsns.2021.106072 https://www.proquest.com/docview/2623905529 |
| Volume | 106 |
| WOSCitedRecordID | wos000721368200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1878-7274 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016954 issn: 1007-5704 databaseCode: AIEXJ dateStart: 19960101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dbtMwFLaqjQtu-EcMBvIFF5tKosaJ44RdtWgImJgqVqTeRa5rbyltWpq0FK54B96AF0PiSTiOkzRdxQRISFUUnTZ25fPF58fnB6Gnjg9SVBFmUaVcy6MtaYWKCkvoPkmcKEF4kDebYKenQb8fdhuNH2UuzHLMkiRYrcLZf2U10IDZOnX2L9hdDQoEuAemwxXYDtc_Ynxbd0XWnqb4i8w9BLBXdQhY_NZQV_I3VTianen59DNfgsxJP8RxGfLgnvDhdJKBtKwoXZktY55eLONxrEfrnHS1J0F-XFRxIW_LoES5mllaUJru4-Pz6TzOLia6S4DQQduF-7c55p9STUzjSQyGtbYDqiWpK8sbySt53G5iCnvwebNMR9LITRbm2GmsRyzakVVA0mma5nipZ5_Z6_AEmb8IbfudvcYcz0YSPiPTjtque0TAmK5CwoybbitVJ9_ZtU-WMtPr2JaGFoAJDQqctyEO8goI26LFeDlGtkjSRNd5Jw7Q_JZpPHSpZveZnk1PBgZ1yw10YYVdwmgIkmO3_fq4_6Y66PLDvFFf9e_Kwlh5COLWVL9Tni6pEblu1LuFbhRGDW4bMN5GDZncQTcLAwcX4iO9i763cQ2b-MBpksM6KvEmKn9-_VbhEe7rSMQHgMNDXKLwOS4xiOsYxBUGj3AdgVgj8Aiv8Ycr_N1D718e9168soomIZZwXSezHDEYcC9wFWcs8IaeZEzBoqoB4UoxKqWkIQ0GTIBuG0qfK0I5bEMDpatyUke499EOgFc-QNh3wDgB88EBqeaFgnHChBdIVwSO4h4he4iUqx-JooK-buQyjspQyVGUsyzSLIsMy_bQs-qhmSkgc_XP_ZKtUfEmGd02Ahxe_eB-CYKo2I3gezBuwhalJHz4r-M-QtfX79g-2snmC_kYXRPLLE7nTwo4_wLz8OUJ |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+generalized+%281%2B2%29-dimensional+Bogoyavlenskii%E2%80%93Kadomtsev%E2%80%93Petviashvili+%28BKP%29+equation%3A+Multiple+exp-function+algorithm%3B+conservation+laws%3B+similarity+solutions&rft.jtitle=Communications+in+nonlinear+science+%26+numerical+simulation&rft.au=Moretlo%2C+T.S.&rft.au=Adem%2C+A.R.&rft.au=Muatjetjeja%2C+B.&rft.date=2022-03-01&rft.pub=Elsevier+B.V&rft.issn=1007-5704&rft.eissn=1878-7274&rft.volume=106&rft_id=info:doi/10.1016%2Fj.cnsns.2021.106072&rft.externalDocID=S1007570421003841 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1007-5704&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1007-5704&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1007-5704&client=summon |