A generalized (1+2)-dimensional Bogoyavlenskii–Kadomtsev–Petviashvili (BKP) equation: Multiple exp-function algorithm; conservation laws; similarity solutions

A generalized (1+2)-dimensional Bogoyavlenskii–Kadomtsev–Petviashvili (BKP) equation which is an augmentation of the Bogoyavlenskii–Schiff equation and Kadomtsev–Petviashvili equation is probed. This equation is hired as a prototype for evolutionary shallow-water waves. The Bogoyavlenskii–Kadomtsev–...

Full description

Saved in:
Bibliographic Details
Published in:Communications in nonlinear science & numerical simulation Vol. 106; p. 106072
Main Authors: Moretlo, T.S., Adem, A.R., Muatjetjeja, B.
Format: Journal Article
Language:English
Published: Amsterdam Elsevier B.V 01.03.2022
Elsevier Science Ltd
Subjects:
ISSN:1007-5704, 1878-7274
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract A generalized (1+2)-dimensional Bogoyavlenskii–Kadomtsev–Petviashvili (BKP) equation which is an augmentation of the Bogoyavlenskii–Schiff equation and Kadomtsev–Petviashvili equation is probed. This equation is hired as a prototype for evolutionary shallow-water waves. The Bogoyavlenskii–Kadomtsev–Petviashvili equation is ambassador of the higher dimensional Kadomtsev–Petviashvili hierarchy. This equation was acquired by a diminution for the well-known three-dimensional Kadomtsev–Petviashvili equation which illustrates the dissemination of nonlinear waves in plasmas and fluid dynamics. We determine novel exact solutions by utilizing the multiple exp-function algorithm and the modern group analysis method. Finally, we compute conserved currents courtesy using the invariance and multiplier technique. The findings can well mimic complex waves and their dealing dynamics in fluids. •A generalized (1+2)-dimensional Bogoyavlenskii–Kadomtsev–Petviashvili (BKP) equation which is an augmentation of the Bogoyavlenskii–Schiff equation and Kadomtsev–Petviashvili equation is probed.•We determine novel exact solutions by utilizing the multiple exp-function algorithm and the modern group analysis method.•Finally, we compute conserved currents courtesy using the invariance and multiplier technique.•The Lie point symmetries consist of time translation, space translation and a scaling transformation.•The novell similarity reductions and new exact solutions are computed. The solutions obtained include the solitary waves, cnoidal and snoidal waves.•In addition, we derive the conservation laws of the underlying system by employing the multiplier variational method and discuss the significance of the computed conservation laws.
AbstractList A generalized (1+2)-dimensional Bogoyavlenskii–Kadomtsev–Petviashvili (BKP) equation which is an augmentation of the Bogoyavlenskii–Schiff equation and Kadomtsev–Petviashvili equation is probed. This equation is hired as a prototype for evolutionary shallow-water waves. The Bogoyavlenskii–Kadomtsev–Petviashvili equation is ambassador of the higher dimensional Kadomtsev–Petviashvili hierarchy. This equation was acquired by a diminution for the well-known three-dimensional Kadomtsev–Petviashvili equation which illustrates the dissemination of nonlinear waves in plasmas and fluid dynamics. We determine novel exact solutions by utilizing the multiple exp-function algorithm and the modern group analysis method. Finally, we compute conserved currents courtesy using the invariance and multiplier technique. The findings can well mimic complex waves and their dealing dynamics in fluids. •A generalized (1+2)-dimensional Bogoyavlenskii–Kadomtsev–Petviashvili (BKP) equation which is an augmentation of the Bogoyavlenskii–Schiff equation and Kadomtsev–Petviashvili equation is probed.•We determine novel exact solutions by utilizing the multiple exp-function algorithm and the modern group analysis method.•Finally, we compute conserved currents courtesy using the invariance and multiplier technique.•The Lie point symmetries consist of time translation, space translation and a scaling transformation.•The novell similarity reductions and new exact solutions are computed. The solutions obtained include the solitary waves, cnoidal and snoidal waves.•In addition, we derive the conservation laws of the underlying system by employing the multiplier variational method and discuss the significance of the computed conservation laws.
A generalized (1 + 2)-dimensional Bogoyavlenskii–Kadomtsev–Petviashvili (BKP) equation which is an augmentation of the Bogoyavlenskii–Schiff equation and Kadomtsev–Petviashvili equation is probed. This equation is hired as a prototype for evolutionary shallow-water waves. The Bogoyavlenskii–Kadomtsev–Petviashvili equation is ambassador of the higher dimensional Kadomtsev–Petviashvili hierarchy. This equation was acquired by a diminution for the well-known three-dimensional Kadomtsev–Petviashvili equation which illustrates the dissemination of nonlinear waves in plasmas and fluid dynamics. We determine novel exact solutions by utilizing the multiple exp-function algorithm and the modern group analysis method. Finally, we compute conserved currents courtesy using the invariance and multiplier technique. The findings can well mimic complex waves and their dealing dynamics in fluids.
ArticleNumber 106072
Author Adem, A.R.
Muatjetjeja, B.
Moretlo, T.S.
Author_xml – sequence: 1
  givenname: T.S.
  surname: Moretlo
  fullname: Moretlo, T.S.
  email: thabo.moretlo@spu.ac.za
  organization: Department of Mathematical Sciences, Sol Plaatje University, Private Bag X5008, Kimberley 8300, Republic of South Africa
– sequence: 2
  givenname: A.R.
  surname: Adem
  fullname: Adem, A.R.
  email: ademar@unisa.ac.za
  organization: Department of Mathematical Sciences, University of South Africa, UNISA 0003, Republic of South Africa
– sequence: 3
  givenname: B.
  surname: Muatjetjeja
  fullname: Muatjetjeja, B.
  email: muatjetjejab@ub.ac.bw
  organization: Department of Mathematics, Faculty of Science, University of Botswana, Private Bag 22, Gaborone, Botswana
BookMark eNqFkcFu1DAURSNUJNrCF7CxxKYVymA78Tih6qKtoKAW0QWsLcd5nnpw7KntBIYV_8Af9NP6JfXMsGIBKz_dd4-l--5Bsee8g6J4SfCMYDJ_s5wpF12cUUxJVuaY0yfFPml4U3LK6708Y8xLxnH9rDiIcYkz1bJ6v7g_QwtwEKQ1P6FHR-Q1PS57M4CLxjtp0blf-LWcbBa-GfPw6_eV7P2QIkx5voE0GRlvJ2MNOjq_ujlGcDfKlNG36NNok1lZQPBjVerRqY2MpF34YNLtcIKUdxHCtLUjK7_HExTNYKzM-zWK3o6bTXxePNXSRnjx5z0svr5_9-XiQ3n9-fLjxdl1qaqKpJKorpN1U2nJeVP3NXCuc0bdUak1ZwDAWtZ0XFHCWphLTZlsedXpuqWMEVUdFq92_66CvxshJrH0Y8g3iILOadVixmibXe3OpYKPMYAWyqRthBSksYJgsalELMW2ErGpROwqyWz1F7sKZpBh_R_qdEdBDj8ZCCIqA05BbwKoJHpv_sk_Agvbro4
CitedBy_id crossref_primary_10_1007_s00033_023_01981_3
crossref_primary_10_1088_1674_1056_adceff
crossref_primary_10_3390_axioms13020092
crossref_primary_10_1007_s12346_022_00730_7
crossref_primary_10_1007_s40819_022_01359_5
crossref_primary_10_1007_s12596_024_02171_8
crossref_primary_10_1007_s12596_024_02172_7
crossref_primary_10_1016_j_aml_2022_108294
crossref_primary_10_1007_s11082_023_04848_z
crossref_primary_10_1007_s40819_022_01474_3
crossref_primary_10_1007_s12596_024_01937_4
crossref_primary_10_1007_s12596_024_01922_x
crossref_primary_10_1038_s41598_025_03938_0
crossref_primary_10_1142_S0217984924504578
crossref_primary_10_1007_s11071_022_07252_6
crossref_primary_10_1016_j_wavemoti_2023_103246
crossref_primary_10_1140_epjp_s13360_022_03301_6
crossref_primary_10_1016_j_physd_2024_134456
crossref_primary_10_1209_0295_5075_acde05
crossref_primary_10_1007_s12346_023_00775_2
crossref_primary_10_1007_s11071_023_09103_4
crossref_primary_10_3390_math10214151
crossref_primary_10_1007_s12596_024_02005_7
Cites_doi 10.1016/j.rinp.2021.104043
10.1002/mma.6914
10.1007/s13324-021-00522-3
10.1016/j.cnsns.2014.08.031
10.1016/j.wavemoti.2021.102719
10.3934/mbe.2021164
10.1007/s13324-020-00414-y
10.1016/j.cnsns.2020.105628
10.1070/RM1990v045n04ABEH002377
10.1016/j.cam.2018.11.018
10.1002/mma.1337
10.1016/j.aml.2019.07.007
10.1017/S0022112079000835
10.4208/eajam.130219.290819
10.1016/j.cam.2018.11.008
10.1016/j.physd.2020.132411
10.1007/s40840-018-0668-z
10.3390/sym12040566
10.1142/S0217984921501165
10.1016/j.ijleo.2021.166985
10.1002/mma.5792
10.1016/j.camwa.2017.06.049
10.1002/mma.4690
10.1002/mma.5964
10.1088/0305-4470/31/50/013
10.2991/jnmp.2008.15.s3.17
10.1016/j.aml.2019.106056
10.1515/jaa-2019-0022
10.1007/s11071-016-2755-8
10.1088/0305-4470/33/10/312
10.3390/math9091009
10.1108/HFF-04-2020-0235
10.1016/j.cnsns.2020.105260
10.1016/j.cjph.2019.11.005
10.1007/s11071-020-06068-6
10.1016/j.cnsns.2009.11.014
10.1002/mma.6931
10.1016/j.ijleo.2020.165237
10.1016/j.matcom.2021.03.012
10.1016/j.ijleo.2020.165752
10.1088/1402-4896/ab4b30
10.1007/s11071-021-06357-8
10.1016/j.cnsns.2020.105612
10.1016/j.geomphys.2019.103508
10.1007/s11071-017-3581-3
10.1016/j.apm.2019.04.044
10.1142/S0217984921500603
10.1002/mma.1339
10.1007/s11071-016-2997-5
10.1088/1674-1056/aba9c4
10.1002/mma.6105
10.1088/1572-9494/abe03a
10.1108/HFF-01-2020-0015
10.1016/j.cnsns.2019.105135
10.1007/s13324-019-00338-2
10.1007/s11785-020-00997-1
10.1016/j.aml.2015.03.019
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright Elsevier Science Ltd. Mar 2022
Copyright_xml – notice: 2021 Elsevier B.V.
– notice: Copyright Elsevier Science Ltd. Mar 2022
DBID AAYXX
CITATION
DOI 10.1016/j.cnsns.2021.106072
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 1878-7274
ExternalDocumentID 10_1016_j_cnsns_2021_106072
S1007570421003841
GroupedDBID --K
--M
-01
-0A
-0I
-0Y
-SA
-S~
.~1
0R~
1B1
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VR
5VS
7-5
71M
8P~
92M
9D9
9DA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABAOU
ABFNM
ABJNI
ABMAC
ABNEU
ABXDB
ABYKQ
ACAZW
ACDAQ
ACFVG
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADGUI
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AFUIB
AGHFR
AGUBO
AGYEJ
AHJVU
AIEXJ
AIGVJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CAJEA
CAJUS
CCEZO
CCVFK
CHBEP
CS3
CUBFJ
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FA0
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
JUIAU
KOM
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q--
Q-0
Q38
R-A
R-I
R2-
RIG
ROL
RPZ
RT1
RT9
S..
SDF
SDG
SES
SEW
SPC
SPCBC
SPD
SSQ
SST
SSW
SSZ
T5K
T8Q
T8Y
U1F
U1G
U5A
U5I
U5K
UHS
~G-
~LA
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
AFXIZ
AGCQF
AGRNS
BNPGV
SSH
ID FETCH-LOGICAL-c331t-1cbba483fa7784d4e77f695fb2aff75eee5958b7c2159e6af25a973bf492551c3
ISICitedReferencesCount 27
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000721368200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1007-5704
IngestDate Mon Jul 14 08:14:58 EDT 2025
Sat Nov 29 07:08:18 EST 2025
Tue Nov 18 22:23:37 EST 2025
Fri Feb 23 02:41:10 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Multiple exp-function algorithm
Conservation laws
35C05
35G20
Similarity solutions
A generalized (1+2)-dimensional Bogoyavlenskii–Kadomtsev–Petviashvili (BKP) equation
35C07
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c331t-1cbba483fa7784d4e77f695fb2aff75eee5958b7c2159e6af25a973bf492551c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2623905529
PQPubID 2047477
ParticipantIDs proquest_journals_2623905529
crossref_citationtrail_10_1016_j_cnsns_2021_106072
crossref_primary_10_1016_j_cnsns_2021_106072
elsevier_sciencedirect_doi_10_1016_j_cnsns_2021_106072
PublicationCentury 2000
PublicationDate March 2022
2022-03-00
20220301
PublicationDateYYYYMMDD 2022-03-01
PublicationDate_xml – month: 03
  year: 2022
  text: March 2022
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Communications in nonlinear science & numerical simulation
PublicationYear 2022
Publisher Elsevier B.V
Elsevier Science Ltd
Publisher_xml – name: Elsevier B.V
– name: Elsevier Science Ltd
References Liu, Zhou, Lü, Xu (b9) 2020; 224
Wazwaz, Mehanna (b11) 2021; 241
Gao, Zi, Yin, Ma, Lü (b50) 2017; 89
Estévez, Prada (b58) 2008; 15
Xu, Tian, Peng (b41) 2020; 43
Wang, Fang (b59) 2020; 95
Wazwaz (b19) 2021; 225
Bruzón, Recio, de la Rosa, Gandarias (b30) 2018; 41
Osman, Baleanu, Adem, Hosseini, Mirzazadeh, Eslami (b32) 2020; 63
Hua, Guo, Ma, Lü (b47) 2019; 74
Chen, Yin, Ma, Lü (b49) 2019; 9
Yasar (b51) 2010; 15
Muatjetjeja, Mbusi, Adem (b31) 2020; 12
He, Lü, Li (b4) 2021; 11
Ablowitz, Segur (b55) 1979; 92
Ma, Wazwaz, Li (b12) 2021; 187
Feng, Tian, Zhang (b43) 2020; 43
Malik, Almusawa, Kumar, Wazwaz, Osman (b15) 2021; 23
Wang, Wazwaz (b18) 2021; 31
Ma, Yong, Lü (b1) 2021; 103
Rosa, Camacho, Bruzón, Gandarias (b27) 2019; 354
Yu, Toda, Fukuyama (b54) 1998; 31
Wang, Wazwaz (b13) 2021; 73
Liu, Wazwaz (b16) 2021; 44
Bogoyavlenskii (b56) 1990; 45
Zhang, Tian, Yang (b37) 2021; 11
San, Yasar (b52) 2015; 22
Huang, Zhou, Lü, Wang (b6) 2021; 35
Peng, Tian, Zhang (b38) 2020; 14
Lü, Ma (b46) 2016; 85
Muatjetjeja, Mbusi, Adem (b36) 2020; 12
Peng, Tian, Wang, Zhang, Fang (b39) 2019; 146
Adem, Muatjetjeja (b35) 2015; 48
Yin, Chen, Lü (b8) 2020; 29
Chulián, Martinez-Rubio, Gandarias, Rosa (b22) 2021; 18
Bruzón, Gandarias (b29) 2018; 41
Chulián, Rosa, Gandarias (b25) 2020; 43
Muatjetjeja, Adem, Mbusi (b33) 2019; 25
Bruzón, Gambino, Gandarias (b21) 2021; 9
Zhou, Lü, Xu (b5) 2021; 35
Adem (b34) 2017; 74
Peng, Tian, Zhang, Fang (b44) 2019; 42
Estévez, Hernáez (b57) 2000; 33
Tian (b40) 2020; 100
Lü, Hua, Chen, Tang (b3) 2021; 95
Wazwaz (b20) 2021; 34
Xia, Zhao, Lü (b10) 2020; 90
Zhang, Tian, Peng, Zhang, Yan (b42) 2020; 10
Estévez, Lejarreta, Sardón (b53) 2017; 87
Lü, Chen (b7) 2021; 103
Chen, Lü, Ma (b45) 2020; 83
Ma, Wazwaz, Li (b14) 2021; 104
Bruzón, Gandarias, Torrisi, Tracinà (b23) 2021; 44
Rosa, Chulián, Gandarias, Tracinà (b24) 2020; 405
Chulián, Rosa, Gandarias (b26) 2019; 354
Xu, Ruan, Yu-Zhang, Lü (b48) 2020; 99
Chen, Lü, Tang (b2) 2021; 95
Gandarias, Bruzon (b28) 2018; 41
Wazwaz (b17) 2021; 31
Chen (10.1016/j.cnsns.2021.106072_b2) 2021; 95
Bruzón (10.1016/j.cnsns.2021.106072_b30) 2018; 41
Liu (10.1016/j.cnsns.2021.106072_b16) 2021; 44
Wang (10.1016/j.cnsns.2021.106072_b18) 2021; 31
Lü (10.1016/j.cnsns.2021.106072_b3) 2021; 95
Adem (10.1016/j.cnsns.2021.106072_b35) 2015; 48
Bogoyavlenskii (10.1016/j.cnsns.2021.106072_b56) 1990; 45
Bruzón (10.1016/j.cnsns.2021.106072_b29) 2018; 41
Chen (10.1016/j.cnsns.2021.106072_b45) 2020; 83
Rosa (10.1016/j.cnsns.2021.106072_b24) 2020; 405
Ablowitz (10.1016/j.cnsns.2021.106072_b55) 1979; 92
Ma (10.1016/j.cnsns.2021.106072_b14) 2021; 104
Ma (10.1016/j.cnsns.2021.106072_b1) 2021; 103
Gao (10.1016/j.cnsns.2021.106072_b50) 2017; 89
Peng (10.1016/j.cnsns.2021.106072_b38) 2020; 14
Zhou (10.1016/j.cnsns.2021.106072_b5) 2021; 35
Muatjetjeja (10.1016/j.cnsns.2021.106072_b36) 2020; 12
Estévez (10.1016/j.cnsns.2021.106072_b57) 2000; 33
Wang (10.1016/j.cnsns.2021.106072_b59) 2020; 95
Xia (10.1016/j.cnsns.2021.106072_b10) 2020; 90
Hua (10.1016/j.cnsns.2021.106072_b47) 2019; 74
Peng (10.1016/j.cnsns.2021.106072_b44) 2019; 42
Wazwaz (10.1016/j.cnsns.2021.106072_b17) 2021; 31
Chulián (10.1016/j.cnsns.2021.106072_b26) 2019; 354
Lü (10.1016/j.cnsns.2021.106072_b7) 2021; 103
Estévez (10.1016/j.cnsns.2021.106072_b58) 2008; 15
Zhang (10.1016/j.cnsns.2021.106072_b42) 2020; 10
Wazwaz (10.1016/j.cnsns.2021.106072_b11) 2021; 241
Rosa (10.1016/j.cnsns.2021.106072_b27) 2019; 354
Huang (10.1016/j.cnsns.2021.106072_b6) 2021; 35
Liu (10.1016/j.cnsns.2021.106072_b9) 2020; 224
Osman (10.1016/j.cnsns.2021.106072_b32) 2020; 63
Chulián (10.1016/j.cnsns.2021.106072_b22) 2021; 18
Yin (10.1016/j.cnsns.2021.106072_b8) 2020; 29
Yasar (10.1016/j.cnsns.2021.106072_b51) 2010; 15
Wang (10.1016/j.cnsns.2021.106072_b13) 2021; 73
Wazwaz (10.1016/j.cnsns.2021.106072_b20) 2021; 34
Bruzón (10.1016/j.cnsns.2021.106072_b23) 2021; 44
Xu (10.1016/j.cnsns.2021.106072_b48) 2020; 99
Feng (10.1016/j.cnsns.2021.106072_b43) 2020; 43
San (10.1016/j.cnsns.2021.106072_b52) 2015; 22
Gandarias (10.1016/j.cnsns.2021.106072_b28) 2018; 41
Bruzón (10.1016/j.cnsns.2021.106072_b21) 2021; 9
Muatjetjeja (10.1016/j.cnsns.2021.106072_b33) 2019; 25
Yu (10.1016/j.cnsns.2021.106072_b54) 1998; 31
Ma (10.1016/j.cnsns.2021.106072_b12) 2021; 187
Chen (10.1016/j.cnsns.2021.106072_b49) 2019; 9
Malik (10.1016/j.cnsns.2021.106072_b15) 2021; 23
Lü (10.1016/j.cnsns.2021.106072_b46) 2016; 85
Wazwaz (10.1016/j.cnsns.2021.106072_b19) 2021; 225
Estévez (10.1016/j.cnsns.2021.106072_b53) 2017; 87
Muatjetjeja (10.1016/j.cnsns.2021.106072_b31) 2020; 12
Xu (10.1016/j.cnsns.2021.106072_b41) 2020; 43
Peng (10.1016/j.cnsns.2021.106072_b39) 2019; 146
Tian (10.1016/j.cnsns.2021.106072_b40) 2020; 100
He (10.1016/j.cnsns.2021.106072_b4) 2021; 11
Zhang (10.1016/j.cnsns.2021.106072_b37) 2021; 11
Chulián (10.1016/j.cnsns.2021.106072_b25) 2020; 43
Adem (10.1016/j.cnsns.2021.106072_b34) 2017; 74
References_xml – volume: 12
  year: 2020
  ident: b36
  article-title: Noether symmetries of a generalized coupled Lane-Emden-Klein-Gordon-Fock system with central symmetry
  publication-title: Symmetry
– volume: 25
  start-page: 211
  year: 2019
  end-page: 217
  ident: b33
  article-title: Traveling wave solutions and conservation laws of a generalized Kudryashov-Sinelshchikov equation
  publication-title: J Appl Anal
– volume: 14
  start-page: 38
  year: 2020
  ident: b38
  article-title: Initial value problem for the pair transition coupled nonlinear Schrödinger equations via the Riemann-Hilbert method
  publication-title: Complex Anal Oper Theory
– volume: 103
  year: 2021
  ident: b1
  article-title: Soliton solutions to the B-type Kadomtsev–Petviashvili equation under general dispersion relations
  publication-title: Wave Motion
– volume: 31
  start-page: 10181
  year: 1998
  end-page: 10186
  ident: b54
  article-title: N-soliton solutions to a (2 + 1)-dimensional integrable equation
  publication-title: J Phys A: Math Gen
– volume: 85
  start-page: 1217
  year: 2016
  end-page: 1222
  ident: b46
  article-title: Study of lump dynamics based on a dimensionally reduced Hirota bilinear equation
  publication-title: Nonlinear Dynam
– volume: 43
  start-page: 865
  year: 2020
  end-page: 880
  ident: b41
  article-title: Riemann-Hilbert approach for multisoliton solutions of generalized coupled fourth-order nonlinear Schrödinger equations
  publication-title: Math Methods Appl Sci
– volume: 11
  start-page: 86
  year: 2021
  ident: b37
  article-title: The Riemann-Hilbert approach for the focusing Hirota equation with single and double poles
  publication-title: Anal Math Phys
– volume: 18
  start-page: 3291
  year: 2021
  end-page: 3312
  ident: b22
  article-title: Lie point symmetries for generalised Fisher’s equations describing tumour dynamics
  publication-title: Math Biosci Eng
– volume: 31
  start-page: 174
  year: 2021
  end-page: 185
  ident: b17
  article-title: A variety of completely integrable Calogero–Bogoyavlenskii–Schiff equations with time-dependent coefficients
  publication-title: Internat J Numer Methods Heat Fluid Flow
– volume: 225
  year: 2021
  ident: b19
  article-title: Bright and dark optical solitons for (3+1)-dimensional Schrödinger equation with cubic–quintic-septic nonlinearities
  publication-title: Optik
– volume: 74
  start-page: 184
  year: 2019
  end-page: 198
  ident: b47
  article-title: Interaction behavior associated with a generalized (2+1)-dimensional Hirota bilinear equation for nonlinear waves
  publication-title: Appl Math Model
– volume: 43
  start-page: 141
  year: 2020
  end-page: 155
  ident: b43
  article-title: Bäcklund transformations, nonlocal symmetries and soliton-cnoidal interaction solutions of the (2 + 1)-dimensional Boussinesq equation
  publication-title: Bull Malays Math Sci Soc
– volume: 41
  start-page: 1631
  year: 2018
  end-page: 1641
  ident: b30
  article-title: Local conservation laws, symmetries, and exact solutions for a Kudryashov-Sinelshchikov equation
  publication-title: Math Methods Appl Sci
– volume: 29
  year: 2020
  ident: b8
  article-title: Localized characteristics of lump and interaction solutions to two extended Jimbo-Miwa equations
  publication-title: Chin Phys B
– volume: 35
  year: 2021
  ident: b6
  article-title: Dispersive optical solitons for the Schrödinger-Hirota equation in optical fibers
  publication-title: Modern Phys Lett B
– volume: 44
  start-page: 2050
  year: 2021
  end-page: 2058
  ident: b23
  article-title: Symmetries and special solutions of a parabolic chemotaxis system
  publication-title: Math Methods Appl Sci
– volume: 405
  year: 2020
  ident: b24
  article-title: Application of Lie point symmetries to the resolution of an interface problem in a generalized Fisher equation
  publication-title: Physica D
– volume: 9
  year: 2021
  ident: b21
  article-title: Generalized Camassa–Holm equations: Symmetry, conservation laws and regular pulse and front solutions
  publication-title: Mathematics
– volume: 22
  start-page: 1297
  year: 2015
  end-page: 1304
  ident: b52
  article-title: On the conservation laws of Derrida-Lebowitz-Speer-Spohn equation
  publication-title: Commun Nonlinear Sci Numer Simul
– volume: 34
  year: 2021
  ident: b20
  article-title: On integrability of an extended Bogoyavlenskii-Kadomtsev-Petviashvili equation: Multiple soliton solutions
  publication-title: Int J Numer Modelling, Electron Netw Devices Fields
– volume: 83
  year: 2020
  ident: b45
  article-title: Bäcklund transformation, exact solutions and interaction behaviour of the (3+1)-dimensional Hirota-Satsuma-Ito-like equation
  publication-title: Commun Nonlinear Sci Numer Simul
– volume: 15
  start-page: 3193
  year: 2010
  end-page: 3200
  ident: b51
  article-title: Conservation laws for a class of soil water equations
  publication-title: Commun Nonlinear Sci Numer Simul
– volume: 11
  year: 2021
  ident: b4
  article-title: Bäcklund transformation, Pfaffian, Wronskian and Grammian solutions to the (3 + 1 ) -dimensional generalized Kadomtsev–Petviashvili equation
  publication-title: Anal Math Phys
– volume: 48
  start-page: 109
  year: 2015
  end-page: 117
  ident: b35
  article-title: Conservation laws and exact solutions for a 2D Zakharov-Kuznetsov equation
  publication-title: Appl Math Lett
– volume: 23
  year: 2021
  ident: b15
  article-title: A (2+1)-dimensional Kadomtsev–Petviashvili equation with competing dispersion effect: Painlevé analysis, dynamical behavior and invariant solutions
  publication-title: Results Phys
– volume: 31
  start-page: 541
  year: 2021
  end-page: 547
  ident: b18
  article-title: Symmetry and Painlevé analysis for the extended Sakovich equation
  publication-title: Internat J Numer Methods Heat Fluid Flow
– volume: 44
  start-page: 2200
  year: 2021
  end-page: 2208
  ident: b16
  article-title: Breather wave and lump-type solutions of new (3 + 1)-dimensional Boiti–Leon–Manna–Pempinelli equation in incompressible fluid
  publication-title: Math Methods Appl Sci
– volume: 9
  start-page: 2329
  year: 2019
  end-page: 2344
  ident: b49
  article-title: Abundant exact solutions and interaction phenomena of the (2 + 1)-dimensional YTSF equation
  publication-title: Anal Math Phys
– volume: 42
  start-page: 6865
  year: 2019
  end-page: 6877
  ident: b44
  article-title: Rational and semi-rational solutions of a nonlocal (2 + 1)-dimensional nonlinear Schrödinger equation
  publication-title: Math Methods Appl Sci
– volume: 92
  start-page: 691
  year: 1979
  end-page: 715
  ident: b55
  article-title: On the evolution of packets of water waves
  publication-title: J Fluid Mech
– volume: 45
  start-page: 1
  year: 1990
  end-page: 86
  ident: b56
  article-title: Breaking solitons in 2 + 1-dimensional integrable equations
  publication-title: Russian Math Surveys
– volume: 89
  start-page: 2233
  year: 2017
  end-page: 2240
  ident: b50
  article-title: Bäcklund transformation, multiple wave solutions and lump solutions to a (3 + 1)-dimensional nonlinear evolution equation
  publication-title: Nonlinear Dynam
– volume: 41
  start-page: 5851
  year: 2018
  end-page: 5857
  ident: b29
  article-title: Traveling wave solutions of the K(m, n) equation with generalized evolution
  publication-title: Math Methods Appl Sci
– volume: 41
  start-page: 5840
  year: 2018
  end-page: 5850
  ident: b28
  article-title: Traveling wave solutions for a generalized Ostrovsky equation
  publication-title: Math Methods Appl Sci
– volume: 354
  start-page: 689
  year: 2019
  end-page: 698
  ident: b26
  article-title: Reductions and symmetries for a generalized Fisher equation with a diffusion term dependent on density and space
  publication-title: J Comput Appl Math
– volume: 12
  year: 2020
  ident: b31
  article-title: Noether symmetries of a generalized coupled Lane-Emden-Klein-Gordon-Fock system with central symmetry
  publication-title: Symmetry
– volume: 100
  year: 2020
  ident: b40
  article-title: Lie symmetry analysis, conservation laws and solitary wave solutions to a fourth-order nonlinear generalized Boussinesq water wave equation
  publication-title: Appl Math Lett
– volume: 90
  year: 2020
  ident: b10
  article-title: Predictability, fast calculation and simulation for the interaction solutions to the cylindrical Kadomtsev-Petviashvili equation
  publication-title: Commun Nonlinear Sci Numer Simul
– volume: 146
  year: 2019
  ident: b39
  article-title: Riemann-Hilbert method and multi-soliton solutions for three-component coupled nonlinear Schrödinger equations
  publication-title: J Geom Phys
– volume: 95
  year: 2020
  ident: b59
  article-title: Various kinds of high-order solitons to the Bogoyavlenskii-Kadomtsev-Petviashvili equation
  publication-title: Phys Scr
– volume: 224
  year: 2020
  ident: b9
  article-title: Dynamic behaviors of optical solitons for Fokas-Lenells equation in optical fiber
  publication-title: Optik
– volume: 74
  start-page: 1897
  year: 2017
  end-page: 1902
  ident: b34
  article-title: Symbolic computation on exact solutions of a coupled Kadomtsev–Petviashvili equation: Lie symmetry analysis and extended tanh method
  publication-title: Comput Math Appl
– volume: 73
  year: 2021
  ident: b13
  article-title: Perturbation, symmetry analysis, Bäcklund and reciprocal transformation for the extended Boussinesq equation in fluid mechanics
  publication-title: Commun Theor Phys
– volume: 187
  start-page: 505
  year: 2021
  end-page: 519
  ident: b12
  article-title: A new (3+1)-dimensional Kadomtsev–Petviashvili equation and its integrability, multiple-solitons, breathers and lump waves
  publication-title: Math Comput Simulation
– volume: 33
  start-page: 2131
  year: 2000
  end-page: 2143
  ident: b57
  article-title: Non-isospectral problem in (2 + 1) dimensions
  publication-title: J Phys A: Math Gen
– volume: 95
  year: 2021
  ident: b2
  article-title: Novel evolutionary behaviors of the mixed solutions to a generalized Burgers equation with variable coefficients
  publication-title: Commun Nonlinear Sci Numer Simul
– volume: 241
  year: 2021
  ident: b11
  article-title: Bright and dark optical solitons for a new (3+1)-dimensional nonlinear Schrödinger equation
  publication-title: Optik
– volume: 43
  start-page: 2076
  year: 2020
  end-page: 2084
  ident: b25
  article-title: Symmetries and solutions for a Fisher equation with a proliferation term involving tumor development
  publication-title: Math Methods Appl Sci
– volume: 354
  start-page: 545
  year: 2019
  end-page: 550
  ident: b27
  article-title: Conservation laws, symmetries, and exact solutions of the classical Burgers–Fisher equation in two dimensions
  publication-title: J Comput Appl Math
– volume: 103
  start-page: 947
  year: 2021
  end-page: 977
  ident: b7
  article-title: Interaction solutions to nonlinear partial differential equations via Hirota bilinear forms: one-lump-multi-stripe and one-lump-multi-soliton types
  publication-title: Nonlinear Dynam
– volume: 95
  year: 2021
  ident: b3
  article-title: Integrability characteristics of a novel (2+1)-dimensional nonlinear model: Painlevé analysis, soliton solutions, Bäcklund transformation, Lax pair and infinitely many conservation laws
  publication-title: Commun Nonlinear Sci Numer Simul
– volume: 35
  year: 2021
  ident: b5
  article-title: Symbolic computation study on exact solutions to a generalized (3+1)-dimensional Kadomtsev-Petviashvili-type equation
  publication-title: Modern Phys Lett B
– volume: 15
  start-page: 166
  year: 2008
  end-page: 175
  ident: b58
  article-title: Lump solutions for PDE’s: Algorithmic construction and classification
  publication-title: J Nonlinear Math Phys
– volume: 99
  year: 2020
  ident: b48
  article-title: Multi-exponential wave solutions to two extended Jimbo-Miwa equations and the resonance behavior
  publication-title: Appl Math Lett
– volume: 87
  start-page: 13
  year: 2017
  end-page: 23
  ident: b53
  article-title: Symmetry computation and reduction of a wave model in 2+ 1 dimensions
  publication-title: Nonlinear Dynam
– volume: 104
  start-page: 1581
  year: 2021
  end-page: 1594
  ident: b14
  article-title: New extended Kadomtsev–Petviashvili equation: multiple soliton solutions, breather, lump and interaction solutions
  publication-title: Nonlinear Dynam
– volume: 63
  start-page: 122
  year: 2020
  end-page: 129
  ident: b32
  article-title: Double-wave solutions and Lie symmetry analysis to the (2 + 1)-dimensional coupled Burgers equations
  publication-title: Chinese J Phys
– volume: 10
  start-page: 243
  year: 2020
  end-page: 255
  ident: b42
  article-title: The dynamics of lump, lumpoff and rogue wave solutions of (2+1)-dimensional Hirota-Satsuma-ito equations
  publication-title: East Asian J Appl Math
– volume: 23
  year: 2021
  ident: 10.1016/j.cnsns.2021.106072_b15
  article-title: A (2+1)-dimensional Kadomtsev–Petviashvili equation with competing dispersion effect: Painlevé analysis, dynamical behavior and invariant solutions
  publication-title: Results Phys
  doi: 10.1016/j.rinp.2021.104043
– volume: 44
  start-page: 2050
  issue: 2
  year: 2021
  ident: 10.1016/j.cnsns.2021.106072_b23
  article-title: Symmetries and special solutions of a parabolic chemotaxis system
  publication-title: Math Methods Appl Sci
  doi: 10.1002/mma.6914
– volume: 11
  start-page: 86
  issue: 2
  year: 2021
  ident: 10.1016/j.cnsns.2021.106072_b37
  article-title: The Riemann-Hilbert approach for the focusing Hirota equation with single and double poles
  publication-title: Anal Math Phys
  doi: 10.1007/s13324-021-00522-3
– volume: 22
  start-page: 1297
  issue: 1–3
  year: 2015
  ident: 10.1016/j.cnsns.2021.106072_b52
  article-title: On the conservation laws of Derrida-Lebowitz-Speer-Spohn equation
  publication-title: Commun Nonlinear Sci Numer Simul
  doi: 10.1016/j.cnsns.2014.08.031
– volume: 103
  year: 2021
  ident: 10.1016/j.cnsns.2021.106072_b1
  article-title: Soliton solutions to the B-type Kadomtsev–Petviashvili equation under general dispersion relations
  publication-title: Wave Motion
  doi: 10.1016/j.wavemoti.2021.102719
– volume: 18
  start-page: 3291
  issue: 4
  year: 2021
  ident: 10.1016/j.cnsns.2021.106072_b22
  article-title: Lie point symmetries for generalised Fisher’s equations describing tumour dynamics
  publication-title: Math Biosci Eng
  doi: 10.3934/mbe.2021164
– volume: 11
  issue: 1
  year: 2021
  ident: 10.1016/j.cnsns.2021.106072_b4
  article-title: Bäcklund transformation, Pfaffian, Wronskian and Grammian solutions to the (3 + 1 ) -dimensional generalized Kadomtsev–Petviashvili equation
  publication-title: Anal Math Phys
  doi: 10.1007/s13324-020-00414-y
– volume: 95
  year: 2021
  ident: 10.1016/j.cnsns.2021.106072_b2
  article-title: Novel evolutionary behaviors of the mixed solutions to a generalized Burgers equation with variable coefficients
  publication-title: Commun Nonlinear Sci Numer Simul
  doi: 10.1016/j.cnsns.2020.105628
– volume: 45
  start-page: 1
  issue: 4
  year: 1990
  ident: 10.1016/j.cnsns.2021.106072_b56
  article-title: Breaking solitons in 2 + 1-dimensional integrable equations
  publication-title: Russian Math Surveys
  doi: 10.1070/RM1990v045n04ABEH002377
– volume: 354
  start-page: 689
  year: 2019
  ident: 10.1016/j.cnsns.2021.106072_b26
  article-title: Reductions and symmetries for a generalized Fisher equation with a diffusion term dependent on density and space
  publication-title: J Comput Appl Math
  doi: 10.1016/j.cam.2018.11.018
– volume: 41
  start-page: 5840
  issue: 15
  year: 2018
  ident: 10.1016/j.cnsns.2021.106072_b28
  article-title: Traveling wave solutions for a generalized Ostrovsky equation
  publication-title: Math Methods Appl Sci
  doi: 10.1002/mma.1337
– volume: 99
  year: 2020
  ident: 10.1016/j.cnsns.2021.106072_b48
  article-title: Multi-exponential wave solutions to two extended Jimbo-Miwa equations and the resonance behavior
  publication-title: Appl Math Lett
  doi: 10.1016/j.aml.2019.07.007
– volume: 92
  start-page: 691
  issue: 4
  year: 1979
  ident: 10.1016/j.cnsns.2021.106072_b55
  article-title: On the evolution of packets of water waves
  publication-title: J Fluid Mech
  doi: 10.1017/S0022112079000835
– volume: 10
  start-page: 243
  issue: 2
  year: 2020
  ident: 10.1016/j.cnsns.2021.106072_b42
  article-title: The dynamics of lump, lumpoff and rogue wave solutions of (2+1)-dimensional Hirota-Satsuma-ito equations
  publication-title: East Asian J Appl Math
  doi: 10.4208/eajam.130219.290819
– volume: 354
  start-page: 545
  year: 2019
  ident: 10.1016/j.cnsns.2021.106072_b27
  article-title: Conservation laws, symmetries, and exact solutions of the classical Burgers–Fisher equation in two dimensions
  publication-title: J Comput Appl Math
  doi: 10.1016/j.cam.2018.11.008
– volume: 405
  year: 2020
  ident: 10.1016/j.cnsns.2021.106072_b24
  article-title: Application of Lie point symmetries to the resolution of an interface problem in a generalized Fisher equation
  publication-title: Physica D
  doi: 10.1016/j.physd.2020.132411
– volume: 43
  start-page: 141
  issue: 1
  year: 2020
  ident: 10.1016/j.cnsns.2021.106072_b43
  article-title: Bäcklund transformations, nonlocal symmetries and soliton-cnoidal interaction solutions of the (2 + 1)-dimensional Boussinesq equation
  publication-title: Bull Malays Math Sci Soc
  doi: 10.1007/s40840-018-0668-z
– volume: 12
  issue: 4
  year: 2020
  ident: 10.1016/j.cnsns.2021.106072_b36
  article-title: Noether symmetries of a generalized coupled Lane-Emden-Klein-Gordon-Fock system with central symmetry
  publication-title: Symmetry
  doi: 10.3390/sym12040566
– volume: 35
  issue: 6
  year: 2021
  ident: 10.1016/j.cnsns.2021.106072_b5
  article-title: Symbolic computation study on exact solutions to a generalized (3+1)-dimensional Kadomtsev-Petviashvili-type equation
  publication-title: Modern Phys Lett B
  doi: 10.1142/S0217984921501165
– volume: 241
  year: 2021
  ident: 10.1016/j.cnsns.2021.106072_b11
  article-title: Bright and dark optical solitons for a new (3+1)-dimensional nonlinear Schrödinger equation
  publication-title: Optik
  doi: 10.1016/j.ijleo.2021.166985
– volume: 42
  start-page: 6865
  issue: 18
  year: 2019
  ident: 10.1016/j.cnsns.2021.106072_b44
  article-title: Rational and semi-rational solutions of a nonlocal (2 + 1)-dimensional nonlinear Schrödinger equation
  publication-title: Math Methods Appl Sci
  doi: 10.1002/mma.5792
– volume: 12
  issue: 4
  year: 2020
  ident: 10.1016/j.cnsns.2021.106072_b31
  article-title: Noether symmetries of a generalized coupled Lane-Emden-Klein-Gordon-Fock system with central symmetry
  publication-title: Symmetry
  doi: 10.3390/sym12040566
– volume: 74
  start-page: 1897
  issue: 8
  year: 2017
  ident: 10.1016/j.cnsns.2021.106072_b34
  article-title: Symbolic computation on exact solutions of a coupled Kadomtsev–Petviashvili equation: Lie symmetry analysis and extended tanh method
  publication-title: Comput Math Appl
  doi: 10.1016/j.camwa.2017.06.049
– volume: 41
  start-page: 1631
  issue: 4
  year: 2018
  ident: 10.1016/j.cnsns.2021.106072_b30
  article-title: Local conservation laws, symmetries, and exact solutions for a Kudryashov-Sinelshchikov equation
  publication-title: Math Methods Appl Sci
  doi: 10.1002/mma.4690
– volume: 43
  start-page: 865
  issue: 2
  year: 2020
  ident: 10.1016/j.cnsns.2021.106072_b41
  article-title: Riemann-Hilbert approach for multisoliton solutions of generalized coupled fourth-order nonlinear Schrödinger equations
  publication-title: Math Methods Appl Sci
  doi: 10.1002/mma.5964
– volume: 31
  start-page: 10181
  issue: 50
  year: 1998
  ident: 10.1016/j.cnsns.2021.106072_b54
  article-title: N-soliton solutions to a (2 + 1)-dimensional integrable equation
  publication-title: J Phys A: Math Gen
  doi: 10.1088/0305-4470/31/50/013
– volume: 15
  start-page: 166
  issue: SUPPL.3
  year: 2008
  ident: 10.1016/j.cnsns.2021.106072_b58
  article-title: Lump solutions for PDE’s: Algorithmic construction and classification
  publication-title: J Nonlinear Math Phys
  doi: 10.2991/jnmp.2008.15.s3.17
– volume: 100
  year: 2020
  ident: 10.1016/j.cnsns.2021.106072_b40
  article-title: Lie symmetry analysis, conservation laws and solitary wave solutions to a fourth-order nonlinear generalized Boussinesq water wave equation
  publication-title: Appl Math Lett
  doi: 10.1016/j.aml.2019.106056
– volume: 25
  start-page: 211
  issue: 2
  year: 2019
  ident: 10.1016/j.cnsns.2021.106072_b33
  article-title: Traveling wave solutions and conservation laws of a generalized Kudryashov-Sinelshchikov equation
  publication-title: J Appl Anal
  doi: 10.1515/jaa-2019-0022
– volume: 85
  start-page: 1217
  issue: 2
  year: 2016
  ident: 10.1016/j.cnsns.2021.106072_b46
  article-title: Study of lump dynamics based on a dimensionally reduced Hirota bilinear equation
  publication-title: Nonlinear Dynam
  doi: 10.1007/s11071-016-2755-8
– volume: 33
  start-page: 2131
  issue: 10
  year: 2000
  ident: 10.1016/j.cnsns.2021.106072_b57
  article-title: Non-isospectral problem in (2 + 1) dimensions
  publication-title: J Phys A: Math Gen
  doi: 10.1088/0305-4470/33/10/312
– volume: 9
  issue: 9
  year: 2021
  ident: 10.1016/j.cnsns.2021.106072_b21
  article-title: Generalized Camassa–Holm equations: Symmetry, conservation laws and regular pulse and front solutions
  publication-title: Mathematics
  doi: 10.3390/math9091009
– volume: 31
  start-page: 541
  issue: 1
  year: 2021
  ident: 10.1016/j.cnsns.2021.106072_b18
  article-title: Symmetry and Painlevé analysis for the extended Sakovich equation
  publication-title: Internat J Numer Methods Heat Fluid Flow
  doi: 10.1108/HFF-04-2020-0235
– volume: 90
  year: 2020
  ident: 10.1016/j.cnsns.2021.106072_b10
  article-title: Predictability, fast calculation and simulation for the interaction solutions to the cylindrical Kadomtsev-Petviashvili equation
  publication-title: Commun Nonlinear Sci Numer Simul
  doi: 10.1016/j.cnsns.2020.105260
– volume: 63
  start-page: 122
  year: 2020
  ident: 10.1016/j.cnsns.2021.106072_b32
  article-title: Double-wave solutions and Lie symmetry analysis to the (2 + 1)-dimensional coupled Burgers equations
  publication-title: Chinese J Phys
  doi: 10.1016/j.cjph.2019.11.005
– volume: 103
  start-page: 947
  issue: 1
  year: 2021
  ident: 10.1016/j.cnsns.2021.106072_b7
  article-title: Interaction solutions to nonlinear partial differential equations via Hirota bilinear forms: one-lump-multi-stripe and one-lump-multi-soliton types
  publication-title: Nonlinear Dynam
  doi: 10.1007/s11071-020-06068-6
– volume: 15
  start-page: 3193
  issue: 10
  year: 2010
  ident: 10.1016/j.cnsns.2021.106072_b51
  article-title: Conservation laws for a class of soil water equations
  publication-title: Commun Nonlinear Sci Numer Simul
  doi: 10.1016/j.cnsns.2009.11.014
– volume: 44
  start-page: 2200
  issue: 2
  year: 2021
  ident: 10.1016/j.cnsns.2021.106072_b16
  article-title: Breather wave and lump-type solutions of new (3 + 1)-dimensional Boiti–Leon–Manna–Pempinelli equation in incompressible fluid
  publication-title: Math Methods Appl Sci
  doi: 10.1002/mma.6931
– volume: 224
  year: 2020
  ident: 10.1016/j.cnsns.2021.106072_b9
  article-title: Dynamic behaviors of optical solitons for Fokas-Lenells equation in optical fiber
  publication-title: Optik
  doi: 10.1016/j.ijleo.2020.165237
– volume: 187
  start-page: 505
  year: 2021
  ident: 10.1016/j.cnsns.2021.106072_b12
  article-title: A new (3+1)-dimensional Kadomtsev–Petviashvili equation and its integrability, multiple-solitons, breathers and lump waves
  publication-title: Math Comput Simulation
  doi: 10.1016/j.matcom.2021.03.012
– volume: 225
  year: 2021
  ident: 10.1016/j.cnsns.2021.106072_b19
  article-title: Bright and dark optical solitons for (3+1)-dimensional Schrödinger equation with cubic–quintic-septic nonlinearities
  publication-title: Optik
  doi: 10.1016/j.ijleo.2020.165752
– volume: 95
  issue: 3
  year: 2020
  ident: 10.1016/j.cnsns.2021.106072_b59
  article-title: Various kinds of high-order solitons to the Bogoyavlenskii-Kadomtsev-Petviashvili equation
  publication-title: Phys Scr
  doi: 10.1088/1402-4896/ab4b30
– volume: 104
  start-page: 1581
  issue: 2
  year: 2021
  ident: 10.1016/j.cnsns.2021.106072_b14
  article-title: New extended Kadomtsev–Petviashvili equation: multiple soliton solutions, breather, lump and interaction solutions
  publication-title: Nonlinear Dynam
  doi: 10.1007/s11071-021-06357-8
– volume: 95
  year: 2021
  ident: 10.1016/j.cnsns.2021.106072_b3
  article-title: Integrability characteristics of a novel (2+1)-dimensional nonlinear model: Painlevé analysis, soliton solutions, Bäcklund transformation, Lax pair and infinitely many conservation laws
  publication-title: Commun Nonlinear Sci Numer Simul
  doi: 10.1016/j.cnsns.2020.105612
– volume: 146
  year: 2019
  ident: 10.1016/j.cnsns.2021.106072_b39
  article-title: Riemann-Hilbert method and multi-soliton solutions for three-component coupled nonlinear Schrödinger equations
  publication-title: J Geom Phys
  doi: 10.1016/j.geomphys.2019.103508
– volume: 34
  issue: 1
  year: 2021
  ident: 10.1016/j.cnsns.2021.106072_b20
  article-title: On integrability of an extended Bogoyavlenskii-Kadomtsev-Petviashvili equation: Multiple soliton solutions
  publication-title: Int J Numer Modelling, Electron Netw Devices Fields
– volume: 89
  start-page: 2233
  issue: 3
  year: 2017
  ident: 10.1016/j.cnsns.2021.106072_b50
  article-title: Bäcklund transformation, multiple wave solutions and lump solutions to a (3 + 1)-dimensional nonlinear evolution equation
  publication-title: Nonlinear Dynam
  doi: 10.1007/s11071-017-3581-3
– volume: 74
  start-page: 184
  year: 2019
  ident: 10.1016/j.cnsns.2021.106072_b47
  article-title: Interaction behavior associated with a generalized (2+1)-dimensional Hirota bilinear equation for nonlinear waves
  publication-title: Appl Math Model
  doi: 10.1016/j.apm.2019.04.044
– volume: 35
  issue: 3
  year: 2021
  ident: 10.1016/j.cnsns.2021.106072_b6
  article-title: Dispersive optical solitons for the Schrödinger-Hirota equation in optical fibers
  publication-title: Modern Phys Lett B
  doi: 10.1142/S0217984921500603
– volume: 41
  start-page: 5851
  issue: 15
  year: 2018
  ident: 10.1016/j.cnsns.2021.106072_b29
  article-title: Traveling wave solutions of the K(m, n) equation with generalized evolution
  publication-title: Math Methods Appl Sci
  doi: 10.1002/mma.1339
– volume: 87
  start-page: 13
  issue: 1
  year: 2017
  ident: 10.1016/j.cnsns.2021.106072_b53
  article-title: Symmetry computation and reduction of a wave model in 2+ 1 dimensions
  publication-title: Nonlinear Dynam
  doi: 10.1007/s11071-016-2997-5
– volume: 29
  issue: 12
  year: 2020
  ident: 10.1016/j.cnsns.2021.106072_b8
  article-title: Localized characteristics of lump and interaction solutions to two extended Jimbo-Miwa equations
  publication-title: Chin Phys B
  doi: 10.1088/1674-1056/aba9c4
– volume: 43
  start-page: 2076
  issue: 4
  year: 2020
  ident: 10.1016/j.cnsns.2021.106072_b25
  article-title: Symmetries and solutions for a Fisher equation with a proliferation term involving tumor development
  publication-title: Math Methods Appl Sci
  doi: 10.1002/mma.6105
– volume: 73
  issue: 4
  year: 2021
  ident: 10.1016/j.cnsns.2021.106072_b13
  article-title: Perturbation, symmetry analysis, Bäcklund and reciprocal transformation for the extended Boussinesq equation in fluid mechanics
  publication-title: Commun Theor Phys
  doi: 10.1088/1572-9494/abe03a
– volume: 31
  start-page: 174
  issue: 1
  year: 2021
  ident: 10.1016/j.cnsns.2021.106072_b17
  article-title: A variety of completely integrable Calogero–Bogoyavlenskii–Schiff equations with time-dependent coefficients
  publication-title: Internat J Numer Methods Heat Fluid Flow
  doi: 10.1108/HFF-01-2020-0015
– volume: 83
  year: 2020
  ident: 10.1016/j.cnsns.2021.106072_b45
  article-title: Bäcklund transformation, exact solutions and interaction behaviour of the (3+1)-dimensional Hirota-Satsuma-Ito-like equation
  publication-title: Commun Nonlinear Sci Numer Simul
  doi: 10.1016/j.cnsns.2019.105135
– volume: 9
  start-page: 2329
  issue: 4
  year: 2019
  ident: 10.1016/j.cnsns.2021.106072_b49
  article-title: Abundant exact solutions and interaction phenomena of the (2 + 1)-dimensional YTSF equation
  publication-title: Anal Math Phys
  doi: 10.1007/s13324-019-00338-2
– volume: 14
  start-page: 38
  issue: 3
  year: 2020
  ident: 10.1016/j.cnsns.2021.106072_b38
  article-title: Initial value problem for the pair transition coupled nonlinear Schrödinger equations via the Riemann-Hilbert method
  publication-title: Complex Anal Oper Theory
  doi: 10.1007/s11785-020-00997-1
– volume: 48
  start-page: 109
  year: 2015
  ident: 10.1016/j.cnsns.2021.106072_b35
  article-title: Conservation laws and exact solutions for a 2D Zakharov-Kuznetsov equation
  publication-title: Appl Math Lett
  doi: 10.1016/j.aml.2015.03.019
SSID ssj0016954
Score 2.4743786
Snippet A generalized (1+2)-dimensional Bogoyavlenskii–Kadomtsev–Petviashvili (BKP) equation which is an augmentation of the Bogoyavlenskii–Schiff equation and...
A generalized (1 + 2)-dimensional Bogoyavlenskii–Kadomtsev–Petviashvili (BKP) equation which is an augmentation of the Bogoyavlenskii–Schiff equation and...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 106072
SubjectTerms A generalized ([formula omitted])-dimensional Bogoyavlenskii–Kadomtsev–Petviashvili (BKP) equation
Algorithms
Conservation laws
Exact solutions
Fluid dynamics
Multiple exp-function algorithm
Nonlinear equations
Plasmas (physics)
Schrodinger equation
Similarity solutions
Water waves
Title A generalized (1+2)-dimensional Bogoyavlenskii–Kadomtsev–Petviashvili (BKP) equation: Multiple exp-function algorithm; conservation laws; similarity solutions
URI https://dx.doi.org/10.1016/j.cnsns.2021.106072
https://www.proquest.com/docview/2623905529
Volume 106
WOSCitedRecordID wos000721368200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1878-7274
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016954
  issn: 1007-5704
  databaseCode: AIEXJ
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NjtMwELZKlwMX_tEuLMgHDrsKiZq_OmFPLVoELKwqKFJvkeM4uylpWpq0FE68A-_Ag3HmIRjHiZvuioo9ILVW6iYjK_PZ8-PxDEJPPceMmNehesgIGCig8usiJ4nuUNDvHZ-zblRy-i05PfVGI3_Qav2uz8IsU5Jl3mrlz_4rq6EPmC2Ozl6B3YoodMA1MB1aYDu0_8T4nqiKLDxNyTdeegg0E9q-ZkHr65HI5i8zcWj96dn0K12C3Mk_JUkd9mCf0Gg6KUBiqp4BL5YJzc-XSZoIiv2TgfAm8M8LFRvyrg5M5KuZLoSlrECenk3nSXE-EZUCmAjcrlzAWkq_5KIzTyYJGNfCFlCvpakwbxxgKWN3M5ncg861-kiSQG-2kFtPqaBYlSRTYBJHNeUW09D4YKxDFHg5GXrGe2ONO1qMOXzGsiS10fSKgEGtwsKqhVy4YF0iSxurlb7TXKvhV0eWDbokRqRHY2ywLM9ETnfLNNZ3bybtviBMVYhjHT03DkoigSASSCLX0I5FXN9ro53e6-PRG7Xr1fXLqn1q7HWWrDIe8dJY_qZJXdApSkVpeBvdrCwc3JPIvINaPLuLblXWDq5kSX4P_ezhBlDxATaxhi182IQo3oTor-8_FDjhuglLfACgPMQ1JJ_jGpC4CUisAHmEm3DEAo5HeA1GrMB4H318eTx88UqvqobozLbNQjdZGFLHs2NKiOdEDickhhcbhxaNY-Jyzl3f9ULCQNn1eZfGlkt9YoexSNPpmsx-gNqAZL6LsB2HbmjZ8BVZ-LqeT2I7ZLYTEVDiGWN7yKo5ELAqpb6o7JIGW7i_h56ph2Yyo8z227s1a4NqWkllNwCwbn9wvwZCUC1P8D9YO37HdS3_4dWG8QjdWE-zfdQu5gv-GF1nyyLJ508qIP8BAdHmhQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+generalized+%28+1+%2B+2+%29-dimensional+Bogoyavlenskii%E2%80%93Kadomtsev%E2%80%93Petviashvili+%28BKP%29+equation%3A+Multiple+exp-function+algorithm%3B+conservation+laws%3B+similarity+solutions&rft.jtitle=Communications+in+nonlinear+science+%26+numerical+simulation&rft.au=Moretlo%2C+T.S.&rft.au=Adem%2C+A.R.&rft.au=Muatjetjeja%2C+B.&rft.date=2022-03-01&rft.issn=1007-5704&rft.volume=106&rft.spage=106072&rft_id=info:doi/10.1016%2Fj.cnsns.2021.106072&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cnsns_2021_106072
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1007-5704&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1007-5704&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1007-5704&client=summon