Distributed asynchronous consensus-based algorithm for blind calibration of sensor networks with autonomous gain correction

In this study, a new algorithm is proposed for distributed asynchronous consensus-based blind calibration of sensor networks with noisy communications and measurements. The algorithm consists of one autonomous recursion of the instrumental variable type for gain correction and one additional recursi...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IET control theory & applications Ročník 12; číslo 16; s. 2287 - 2293
Hlavní autor: Stanković, Maja
Médium: Journal Article
Jazyk:angličtina
Vydáno: The Institution of Engineering and Technology 06.11.2018
Témata:
ISSN:1751-8644, 1751-8652
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this study, a new algorithm is proposed for distributed asynchronous consensus-based blind calibration of sensor networks with noisy communications and measurements. The algorithm consists of one autonomous recursion of the instrumental variable type for gain correction and one additional recursion of gradient type for offset correction based on the corrected gains. It is proved using asynchronous stochastic approximation arguments that the algorithm achieves asymptotic consensus with regard to both the corrected sensor gains and offsets in the mean square sense and with probability one. The algorithm is more flexible than the existing similar algorithms for blind macro-calibration and provides a superior convergence rate, especially when used in networks with one fixed reference node. Simulation results confirm the main theoretical statements.
ISSN:1751-8644
1751-8652
DOI:10.1049/iet-cta.2018.5417