Scalable Surface Reconstruction with Delaunay‐Graph Neural Networks

We introduce a novel learning‐based, visibility‐aware, surface reconstruction method for large‐scale, defect‐laden point clouds. Our approach can cope with the scale and variety of point cloud defects encountered in real‐life Multi‐View Stereo (MVS) acquisitions. Our method relies on a 3D Delaunay t...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Computer graphics forum Ročník 40; číslo 5; s. 157 - 167
Hlavní autori: Sulzer, R., Landrieu, L., Marlet, R., Vallet, B.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Oxford Blackwell Publishing Ltd 01.08.2021
Wiley
Edícia:Eurographics Symposium on Geometry Processing 2021, July 12 – 14, 2021
Predmet:
ISSN:0167-7055, 1467-8659
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:We introduce a novel learning‐based, visibility‐aware, surface reconstruction method for large‐scale, defect‐laden point clouds. Our approach can cope with the scale and variety of point cloud defects encountered in real‐life Multi‐View Stereo (MVS) acquisitions. Our method relies on a 3D Delaunay tetrahedralization whose cells are classified as inside or outside the surface by a graph neural network and an energy model solvable with a graph cut. Our model, making use of both local geometric attributes and line‐of‐sight visibility information, is able to learn a visibility model from a small amount of synthetic training data and generalizes to real‐life acquisitions. Combining the efficiency of deep learning methods and the scalability of energy‐based models, our approach outperforms both learning and non learning‐based reconstruction algorithms on two publicly available reconstruction benchmarks.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0167-7055
1467-8659
DOI:10.1111/cgf.14364