Scalable Surface Reconstruction with Delaunay‐Graph Neural Networks
We introduce a novel learning‐based, visibility‐aware, surface reconstruction method for large‐scale, defect‐laden point clouds. Our approach can cope with the scale and variety of point cloud defects encountered in real‐life Multi‐View Stereo (MVS) acquisitions. Our method relies on a 3D Delaunay t...
Gespeichert in:
| Veröffentlicht in: | Computer graphics forum Jg. 40; H. 5; S. 157 - 167 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Oxford
Blackwell Publishing Ltd
01.08.2021
Wiley |
| Schriftenreihe: | Eurographics Symposium on Geometry Processing 2021, July 12 – 14, 2021 |
| Schlagworte: | |
| ISSN: | 0167-7055, 1467-8659 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | We introduce a novel learning‐based, visibility‐aware, surface reconstruction method for large‐scale, defect‐laden point clouds. Our approach can cope with the scale and variety of point cloud defects encountered in real‐life Multi‐View Stereo (MVS) acquisitions. Our method relies on a 3D Delaunay tetrahedralization whose cells are classified as inside or outside the surface by a graph neural network and an energy model solvable with a graph cut. Our model, making use of both local geometric attributes and line‐of‐sight visibility information, is able to learn a visibility model from a small amount of synthetic training data and generalizes to real‐life acquisitions. Combining the efficiency of deep learning methods and the scalability of energy‐based models, our approach outperforms both learning and non learning‐based reconstruction algorithms on two publicly available reconstruction benchmarks. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0167-7055 1467-8659 |
| DOI: | 10.1111/cgf.14364 |