Scalable Surface Reconstruction with Delaunay‐Graph Neural Networks

We introduce a novel learning‐based, visibility‐aware, surface reconstruction method for large‐scale, defect‐laden point clouds. Our approach can cope with the scale and variety of point cloud defects encountered in real‐life Multi‐View Stereo (MVS) acquisitions. Our method relies on a 3D Delaunay t...

Full description

Saved in:
Bibliographic Details
Published in:Computer graphics forum Vol. 40; no. 5; pp. 157 - 167
Main Authors: Sulzer, R., Landrieu, L., Marlet, R., Vallet, B.
Format: Journal Article
Language:English
Published: Oxford Blackwell Publishing Ltd 01.08.2021
Wiley
Series:Eurographics Symposium on Geometry Processing 2021, July 12 – 14, 2021
Subjects:
ISSN:0167-7055, 1467-8659
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We introduce a novel learning‐based, visibility‐aware, surface reconstruction method for large‐scale, defect‐laden point clouds. Our approach can cope with the scale and variety of point cloud defects encountered in real‐life Multi‐View Stereo (MVS) acquisitions. Our method relies on a 3D Delaunay tetrahedralization whose cells are classified as inside or outside the surface by a graph neural network and an energy model solvable with a graph cut. Our model, making use of both local geometric attributes and line‐of‐sight visibility information, is able to learn a visibility model from a small amount of synthetic training data and generalizes to real‐life acquisitions. Combining the efficiency of deep learning methods and the scalability of energy‐based models, our approach outperforms both learning and non learning‐based reconstruction algorithms on two publicly available reconstruction benchmarks.
AbstractList We introduce a novel learning‐based, visibility‐aware, surface reconstruction method for large‐scale, defect‐laden point clouds. Our approach can cope with the scale and variety of point cloud defects encountered in real‐life Multi‐View Stereo (MVS) acquisitions. Our method relies on a 3D Delaunay tetrahedralization whose cells are classified as inside or outside the surface by a graph neural network and an energy model solvable with a graph cut. Our model, making use of both local geometric attributes and line‐of‐sight visibility information, is able to learn a visibility model from a small amount of synthetic training data and generalizes to real‐life acquisitions. Combining the efficiency of deep learning methods and the scalability of energy‐based models, our approach outperforms both learning and non learning‐based reconstruction algorithms on two publicly available reconstruction benchmarks.
Author Vallet, B.
Marlet, R.
Landrieu, L.
Sulzer, R.
Author_xml – sequence: 1
  givenname: R.
  orcidid: 0000-0003-1707-7621
  surname: Sulzer
  fullname: Sulzer, R.
  organization: Univ Gustave Eiffel, CNRS
– sequence: 2
  givenname: L.
  orcidid: 0000-0002-7738-8141
  surname: Landrieu
  fullname: Landrieu, L.
  organization: Univ Gustave Eiffel, ENSG IGN
– sequence: 3
  givenname: R.
  orcidid: 0000-0003-1612-1758
  surname: Marlet
  fullname: Marlet, R.
  organization: valeo.ai
– sequence: 4
  givenname: B.
  orcidid: 0000-0002-9492-5180
  surname: Vallet
  fullname: Vallet, B.
  organization: Univ Gustave Eiffel, ENSG IGN
BackLink https://hal.science/hal-03312448$$DView record in HAL
BookMark eNp9kM9KAzEQxoMo2FYPvsGCJw9tk82fTY-l9o9QFKyew2w2a7fG3ZrsWnrzEXxGn8TUioKgc_mG4Ztvhl8bHZZVaRA6I7hHQvX1Q94jjAp2gFqEiaQrBR8cohYmoU8w58eo7f0KY8wSwVtovNBgIbUmWjQuB22iW6Or0teu0XVRldGmqJfRpbHQlLB9f32bOlgvo2vTOLBB6k3lHv0JOsrBenP6pR10PxnfjWbd-c30ajScdzWlhHUznSaxAEN4TIHIgeY401pQoAKDjFMjs9ykmkojOWMZAM-o0YMMA6OGyYx20MU-dwlWrV3xBG6rKijUbDhXuxkOd2LG5AsJ3vO9d-2q58b4Wq2qxpXhPRVzQTmWhMmfRO0q753Jv2MJVjuiKhBVn0SDt__Lq4sadpRqB4X9b2NTWLP9O1qNppP9xgeyyImo
CitedBy_id crossref_primary_10_14358_PERS_23_00007R3
crossref_primary_10_1109_TVCG_2023_3281781
crossref_primary_10_3390_electronics14152949
crossref_primary_10_1016_j_cad_2024_103729
crossref_primary_10_1007_s11263_024_02344_9
crossref_primary_10_1109_TPAMI_2024_3510932
crossref_primary_10_1080_10095020_2025_2502481
crossref_primary_10_1145_3687956
Cites_doi 10.1111/cgf.12431
10.1109/CVPR.2017.272
10.1109/CVPR.2010.5539824
10.1111/j.1467-8659.2009.01530.x
10.1145/1576246.1531330
10.1109/CVPR42600.2020.00264
10.1007/978-3-030-58598-3_5
10.1007/978-3-319-54190-7_23
10.1016/j.cagd.2004.09.004
10.1109/CVPR.2017.11
10.1109/CVPR.2019.01037
10.1109/CVPR.2019.00025
10.1109/CVPR.2018.00029
10.1155/2014/798595
10.1109/CVPR.2019.00459
10.1007/978-3-030-58526-6_36
10.1109/TPAMI.2004.60
10.1007/978-3-030-58592-1_45
10.1109/CVPR42600.2020.00105
10.1109/CVPR.2011.5995693
10.3390/s19061278
10.1109/34.969114
10.1109/CVPR.2018.00030
10.1109/ICCV.2019.00988
10.1109/ICPR.2016.7900128
10.1109/CVPR.2019.00572
10.1007/978-3-319-10602-1_54
10.1007/978-3-319-46484-8_38
10.1145/3386569.3392415
ContentType Journal Article
Copyright 2021 The Author(s) Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.
2021 The Eurographics Association and John Wiley & Sons Ltd.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2021 The Author(s) Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.
– notice: 2021 The Eurographics Association and John Wiley & Sons Ltd.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
1XC
VOOES
DOI 10.1111/cgf.14364
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList CrossRef
Computer and Information Systems Abstracts


DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1467-8659
EndPage 167
ExternalDocumentID oai:HAL:hal-03312448v1
10_1111_cgf_14364
CGF14364
Genre article
GrantInformation_xml – fundername: BIOM
  funderid: ANR-17-CE23-0003
GroupedDBID .3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
15B
1OB
1OC
29F
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
6J9
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8VB
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABDPE
ABEML
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AEMOZ
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFNX
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AHEFC
AHQJS
AITYG
AIURR
AIWBW
AJBDE
AJXKR
AKVCP
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
COF
CS3
CWDTD
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EAD
EAP
EBA
EBO
EBR
EBS
EBU
EDO
EJD
EMK
EST
ESX
F00
F01
F04
F5P
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
I-F
IHE
IX1
J0M
K1G
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QWB
R.K
RDJ
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TH9
TN5
TUS
UB1
V8K
W8V
W99
WBKPD
WIH
WIK
WOHZO
WQJ
WRC
WXSBR
WYISQ
WZISG
XG1
ZL0
ZZTAW
~IA
~IF
~WT
AAMMB
AAYXX
ADMLS
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
O8X
7SC
8FD
JQ2
L7M
L~C
L~D
1XC
VOOES
ID FETCH-LOGICAL-c3314-dcb726ae1523a189c50dcc63a360a82be8dfebc38e8544daa5d3ec9d0a43e48d3
IEDL.DBID DRFUL
ISICitedReferencesCount 10
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000687373500014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0167-7055
IngestDate Sun Oct 19 06:20:39 EDT 2025
Fri Jul 25 06:31:19 EDT 2025
Sat Nov 29 03:41:20 EST 2025
Tue Nov 18 21:11:20 EST 2025
Wed Jan 22 16:57:05 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3314-dcb726ae1523a189c50dcc63a360a82be8dfebc38e8544daa5d3ec9d0a43e48d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1612-1758
0000-0002-9492-5180
0000-0003-1707-7621
0000-0002-7738-8141
OpenAccessLink https://hal.science/hal-03312448
PQID 2563508148
PQPubID 30877
PageCount 11
ParticipantIDs hal_primary_oai_HAL_hal_03312448v1
proquest_journals_2563508148
crossref_primary_10_1111_cgf_14364
crossref_citationtrail_10_1111_cgf_14364
wiley_primary_10_1111_cgf_14364_CGF14364
PublicationCentury 2000
PublicationDate August 2021
2021-08-00
20210801
2021-08
PublicationDateYYYYMMDD 2021-08-01
PublicationDate_xml – month: 08
  year: 2021
  text: August 2021
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationSeriesTitle Eurographics Symposium on Geometry Processing 2021, July 12 – 14, 2021
PublicationTitle Computer graphics forum
PublicationYear 2021
Publisher Blackwell Publishing Ltd
Wiley
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley
References 2001
2012
2011
2021
2010
2020
2009
2019
2018
2017
2016
2004
2015
2014
2013
2005; 22
e_1_2_7_5_2
e_1_2_7_4_2
e_1_2_7_3_2
e_1_2_7_2_2
e_1_2_7_9_2
e_1_2_7_8_2
e_1_2_7_7_2
e_1_2_7_6_2
e_1_2_7_19_2
e_1_2_7_18_2
e_1_2_7_17_2
e_1_2_7_16_2
e_1_2_7_15_2
e_1_2_7_14_2
e_1_2_7_40_2
e_1_2_7_13_2
e_1_2_7_41_2
e_1_2_7_12_2
e_1_2_7_42_2
e_1_2_7_11_2
e_1_2_7_43_2
e_1_2_7_10_2
e_1_2_7_44_2
e_1_2_7_45_2
e_1_2_7_26_2
e_1_2_7_27_2
e_1_2_7_28_2
e_1_2_7_29_2
e_1_2_7_25_2
e_1_2_7_24_2
e_1_2_7_30_2
e_1_2_7_23_2
e_1_2_7_31_2
e_1_2_7_22_2
e_1_2_7_32_2
e_1_2_7_21_2
e_1_2_7_33_2
e_1_2_7_20_2
e_1_2_7_34_2
e_1_2_7_35_2
e_1_2_7_36_2
e_1_2_7_37_2
e_1_2_7_38_2
e_1_2_7_39_2
References_xml – year: 2011
– volume: 22
  start-page: 121
  issue: 2
  year: 2005
  end-page: 146
  article-title: Estimating differential quantities using polynomial fitting of osculating jets
  publication-title: Computer Aided Geometric Design
– year: 2009
– year: 2001
– year: 2020
– year: 2021
– year: 2004
– year: 2017
– year: 2016
– year: 2018
– year: 2019
– year: 2014
– year: 2015
– year: 2010
– year: 2013
– year: 2012
– ident: e_1_2_7_4_2
  doi: 10.1111/cgf.12431
– ident: e_1_2_7_40_2
  doi: 10.1109/CVPR.2017.272
– ident: e_1_2_7_15_2
  doi: 10.1109/CVPR.2010.5539824
– ident: e_1_2_7_31_2
  doi: 10.1111/j.1467-8659.2009.01530.x
– ident: e_1_2_7_8_2
  doi: 10.1145/1576246.1531330
– ident: e_1_2_7_41_2
– ident: e_1_2_7_13_2
– ident: e_1_2_7_30_2
– ident: e_1_2_7_24_2
– ident: e_1_2_7_32_2
– ident: e_1_2_7_2_2
  doi: 10.1109/CVPR42600.2020.00264
– ident: e_1_2_7_18_2
– ident: e_1_2_7_33_2
  doi: 10.1007/978-3-030-58598-3_5
– ident: e_1_2_7_11_2
  doi: 10.1007/978-3-319-54190-7_23
– ident: e_1_2_7_6_2
– ident: e_1_2_7_16_2
  doi: 10.1016/j.cagd.2004.09.004
– ident: e_1_2_7_26_2
– ident: e_1_2_7_38_2
  doi: 10.1109/CVPR.2017.11
– ident: e_1_2_7_9_2
– ident: e_1_2_7_12_2
– ident: e_1_2_7_43_2
  doi: 10.1109/CVPR.2019.01037
– ident: e_1_2_7_36_2
  doi: 10.1109/CVPR.2019.00025
– ident: e_1_2_7_44_2
  doi: 10.1109/CVPR.2018.00029
– ident: e_1_2_7_28_2
  doi: 10.1155/2014/798595
– ident: e_1_2_7_35_2
  doi: 10.1109/CVPR.2019.00459
– ident: e_1_2_7_14_2
  doi: 10.1007/978-3-030-58526-6_36
– ident: e_1_2_7_37_2
– ident: e_1_2_7_29_2
– ident: e_1_2_7_5_2
  doi: 10.1109/TPAMI.2004.60
– ident: e_1_2_7_39_2
  doi: 10.1007/978-3-030-58592-1_45
– ident: e_1_2_7_3_2
– ident: e_1_2_7_34_2
  doi: 10.1109/CVPR42600.2020.00105
– ident: e_1_2_7_22_2
– ident: e_1_2_7_27_2
  doi: 10.1109/CVPR.2011.5995693
– ident: e_1_2_7_25_2
– ident: e_1_2_7_45_2
  doi: 10.3390/s19061278
– ident: e_1_2_7_10_2
  doi: 10.1109/34.969114
– ident: e_1_2_7_20_2
  doi: 10.1109/CVPR.2018.00030
– ident: e_1_2_7_21_2
  doi: 10.1109/ICCV.2019.00988
– ident: e_1_2_7_7_2
  doi: 10.1109/ICPR.2016.7900128
– ident: e_1_2_7_19_2
  doi: 10.1109/CVPR.2019.00572
– ident: e_1_2_7_42_2
  doi: 10.1007/978-3-319-10602-1_54
– ident: e_1_2_7_17_2
  doi: 10.1007/978-3-319-46484-8_38
– ident: e_1_2_7_23_2
  doi: 10.1145/3386569.3392415
SSID ssj0004765
Score 2.39477
Snippet We introduce a novel learning‐based, visibility‐aware, surface reconstruction method for large‐scale, defect‐laden point clouds. Our approach can cope with the...
We introduce a novel learning-based, visibility-aware, surface reconstruction method for large-scale, defect-laden point clouds. Our approach can cope with the...
SourceID hal
proquest
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 157
SubjectTerms Algorithms
CCS Concepts
Computer Science
Computing methodologies → Reconstruction
Deep learning
Graph neural networks
Machine learning
Neural networks
Reconstruction
Shape inference
Visibility
Title Scalable Surface Reconstruction with Delaunay‐Graph Neural Networks
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcgf.14364
https://www.proquest.com/docview/2563508148
https://hal.science/hal-03312448
Volume 40
WOSCitedRecordID wos000687373500014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Journals
  customDbUrl:
  eissn: 1467-8659
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004765
  issn: 0167-7055
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB5q60EPvsVqlSAevASa7CbZ4Kn0oYdSxAd4C5PZiQpSxdqCN3-Cv9Ff4m6a1AoKgreQTJLNPDIzy8w3AEesY8p8j1wvYnZlRuiiUOzGKg0oixBTzqeW9KPBQN3cxOcVOCl7Yab4ELMNN2sZ-f_aGjimozkjp9vMmLkI5QLUbFOVUela56J33f9qi4zCoIT2tqAxBbCQLeSZ3fzNHS3c2WLIuUhzPl7NHU5v9V9LXYOVIs50WlPFWIcKDzdgeQ59cBO6l0Y-tnPKuRw_Z0js2Fz0C1HWsXu0TocfcDzE14-391MLbu1YOA_z5MG0fny0Bde97lX7zC2mKrgkhCddTWnkh8jGcQv0VExBUxOFAkXYROWnrHTGKRmBqUBKjRhowRTrJkrBUmmxDdXh45B3wAmIMtJBoCJWkjSmkr0QhXX60teo63BcMjehAnLcTr54SMrUw3AmyTlTh8MZ6dMUZ-NHIiOh2XWLjH3W6if2XNN8m4lU1MSrQ6MUYFLY4ygxgZ0woajJ_cyaclH9_pakfdrLD3b_TroHS74tdskrAxtQNZLifVikycv96PmgUMxPMV7n5Q
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS9xAEB_0TrB98KNaenpqKD74Ekiym2QDvsh9iulReif4FiazEy3ItXhV6Fv_hP6N_UvczSXnCQoF30IySTbzkZlZZn4DcMw6oSLwyfVjZlcWhC4KxW6i8pCKGDHncmpJGo9G6uoq-boCp3UvzBwfYrHhZi2j_F9bA7cb0ktWTteFsXMRyVVoSqNGXgOa3W_9y_SpLzKOwhrb26LGVMhCtpJncfMzf7R6Y6shl0LN5YC19Dj9zbetdQs2qkjTOZurxjas8PQDvF_CH9yB3thIyPZOOeP7uwKJHZuNPmHKOnaX1unyLd5P8fe_P38HFt7asYAe5smjeQX5bBcu-71JZ-hWcxVcEsKXrqY8DiJk47oF-iqh0NNEkUAReaiCnJUuOCcjMhVKqRFDLZgS7aEULJUWH6Ex_THlT-CERAXpMFQxK0kac8l-hMK6fRlo1C04qbmbUQU6bmdf3GZ18mE4k5WcacHnBenPOdLGi0RGRIvrFht7eJZm9pxnvs3EKurBb0G7lmBWWeQsM6GdMMGoyf7MmkpZvf6WrDPolwd7_096BOvDyZc0S89HF_vwLrClL2WdYBsaRmp8AGv08Ov77O6w0tJH-4zrzA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NattAEB4cu4T2kP4kpW6cVJQeehFY2l1pBb2EOIpDhTF1DbmJ0ewoKQQ3xE2gtz5CnzFPkl1ZslVoIdCbkEbSamZH880y-w3ABzYJlWFAfhAz-7Ik9FFo9hNdKCpjxIKrriVZPJno8_Nk2oFPzV6YFT_EesHNeUb1v3YOztembHk5XZTWz0Ukt6AnlcX5XeiNvqTzbLMvMo5Uw-3tWGNqZiFXybO--Y94tHXpqiFbULMNWKuIkz7_v7G-gJ0aaXpHq6nxEjq8eAXPWvyDu3AysxZye6e82e1NicSey0Y3nLKeW6X1RnyFtwv8ef_r96mjt_YcoYd98mRVQb7cg3l68vV47Nd9FXwSIpC-oSIOI2QbugUGOiE1NESRQBENUYcFa1NyQdZkWklpEJURTIkZohQstRGvobv4vuA34CmikoxSOmYtyWAhOYhQuLAvQ4OmDx8b7eZUk4673hdXeZN8WM3klWb68H4ter1i2virkDXR-rrjxh4fZbk7N7TfZrGKvgv6MGgsmNceucwttBMWjNrsz46pstW_35Ifn6bVwdvHi76D7ekozbOzyed9eBq6ypeqTHAAXWs0PoAndPfj2_LmsJ6kD72K61A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Scalable+Surface+Reconstruction+with+Delaunay%E2%80%90Graph+Neural+Networks&rft.jtitle=Computer+graphics+forum&rft.au=Sulzer%2C+R.&rft.au=Landrieu%2C+L.&rft.au=Marlet%2C+R.&rft.au=Vallet%2C+B.&rft.date=2021-08-01&rft.issn=0167-7055&rft.eissn=1467-8659&rft.volume=40&rft.issue=5&rft.spage=157&rft.epage=167&rft_id=info:doi/10.1111%2Fcgf.14364&rft.externalDBID=10.1111%252Fcgf.14364&rft.externalDocID=CGF14364
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-7055&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-7055&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-7055&client=summon