State filtering-based least squares parameter estimation for bilinear systems using the hierarchical identification principle

This study presents a combined parameter and state estimation algorithm for a bilinear system described by its observer canonical state-space model based on the hierarchical identification principle. The Kalman filter is known as the best state filter for linear systems, but not applicable for bilin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IET control theory & applications Jg. 12; H. 12; S. 1704 - 1713
Hauptverfasser: Zhang, Xiao, Ding, Feng, Xu, Ling, Yang, Erfu
Format: Journal Article
Sprache:Englisch
Veröffentlicht: The Institution of Engineering and Technology 14.08.2018
Schlagworte:
ISSN:1751-8644, 1751-8652
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study presents a combined parameter and state estimation algorithm for a bilinear system described by its observer canonical state-space model based on the hierarchical identification principle. The Kalman filter is known as the best state filter for linear systems, but not applicable for bilinear systems. Thus, a bilinear state observer (BSO) is designed to give the state estimates using the extremum principle. Then a BSO-based recursive least squares (BSO-RLS) algorithm is developed. For comparison with the BSO-RLS algorithm, by dividing the system into three fictitious subsystems on the basis of the decomposition–coordination principle, a BSO-based hierarchical least squares algorithm is proposed to reduce the computation burden. Moreover, a BSO-based forgetting factor recursive least squares algorithm is presented to improve the parameter tracking capability. Finally, a numerical example illustrates the effectiveness of the proposed algorithms.
ISSN:1751-8644
1751-8652
DOI:10.1049/iet-cta.2018.0156