Outliers in spectrum of sparse Wigner matrices

In this paper, we study the effect of sparsity on the appearance of outliers in the semi‐circular law. Let (Wn)n=1∞ be a sequence of random symmetric matrices such that each Wn is n × n with i.i.d. entries above and on the main diagonal equidistributed with the product bnξ, where ξ is a real centere...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Random structures & algorithms Jg. 58; H. 3; S. 517 - 605
Hauptverfasser: Tikhomirov, Konstantin, Youssef, Pierre
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York John Wiley & Sons, Inc 01.05.2021
Wiley Subscription Services, Inc
Wiley
Schlagworte:
ISSN:1042-9832, 1098-2418
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In this paper, we study the effect of sparsity on the appearance of outliers in the semi‐circular law. Let (Wn)n=1∞ be a sequence of random symmetric matrices such that each Wn is n × n with i.i.d. entries above and on the main diagonal equidistributed with the product bnξ, where ξ is a real centered uniformly bounded random variable of unit variance and bn is an independent Bernoulli random variable with a probability of success pn. Assuming that limn→∞npn=∞, we show that for the random sequence (ρn)n=1∞ given by ρn:=θn+npnθn,θn:=max(maxi≤n‖rowi(Wn)‖22−npn,npn), the ratio ‖Wn‖ρn converges to one in probability. A noncentered counterpart of the theorem allows to obtain asymptotic expressions for eigenvalues of the Erdős–Renyi graphs, which were unknown in the regime npn=Θ(logn). In particular, denoting by An the adjacency matrix of the Erdős–Renyi graph 𝒢(n,pn) and by λ|k|(An) its kth largest (by the absolute value) eigenvalue, under the assumptions limn→∞npn=∞ and limn→∞pn=0 we have (1) (No non‐trivial outliers): if liminfnpnlogn≥1log(4/e) then for any fixed k ≥ 2, |λ|k|(An)|2npn converges to 1 in probability; and (2) (Outliers): if limsupnpnlogn<1log(4/e) then there is ε > 0 such that for any k∈ℕ, we have limn→∞ℙ|λ|k|(An)|2npn>1+ε=1. On a conceptual level, our result reveals similarities in appearance of outliers in spectrum of sparse matrices and the so‐called BBP phase transition phenomenon in deformed Wigner matrices.
AbstractList In this paper, we study the effect of sparsity on the appearance of outliers in the semi‐circular law. Let (Wn)n=1∞ be a sequence of random symmetric matrices such that each Wn is n × n with i.i.d. entries above and on the main diagonal equidistributed with the product bnξ, where ξ is a real centered uniformly bounded random variable of unit variance and bn is an independent Bernoulli random variable with a probability of success pn. Assuming that limn→∞npn=∞, we show that for the random sequence (ρn)n=1∞ given by ρn:=θn+npnθn,θn:=max(maxi≤n‖rowi(Wn)‖22−npn,npn), the ratio ‖Wn‖ρn converges to one in probability. A noncentered counterpart of the theorem allows to obtain asymptotic expressions for eigenvalues of the Erdős–Renyi graphs, which were unknown in the regime npn=Θ(logn). In particular, denoting by An the adjacency matrix of the Erdős–Renyi graph 𝒢(n,pn) and by λ|k|(An) its kth largest (by the absolute value) eigenvalue, under the assumptions limn→∞npn=∞ and limn→∞pn=0 we have (1) (No non‐trivial outliers): if liminfnpnlogn≥1log(4/e) then for any fixed k ≥ 2, |λ|k|(An)|2npn converges to 1 in probability; and (2) (Outliers): if limsupnpnlogn<1log(4/e) then there is ε > 0 such that for any k∈ℕ, we have limn→∞ℙ|λ|k|(An)|2npn>1+ε=1. On a conceptual level, our result reveals similarities in appearance of outliers in spectrum of sparse matrices and the so‐called BBP phase transition phenomenon in deformed Wigner matrices.
In this paper, we study the effect of sparsity on the appearance of outliers in the semi‐circular law. Let (Wn)n=1∞ be a sequence of random symmetric matrices such that each Wn is n × n with i.i.d. entries above and on the main diagonal equidistributed with the product bnξ, where ξ is a real centered uniformly bounded random variable of unit variance and bn is an independent Bernoulli random variable with a probability of success pn. Assuming that limn→∞npn=∞, we show that for the random sequence (ρn)n=1∞given by ρn:=θn+npnθn,θn:=max(maxi≤n‖rowi(Wn)‖22−npn,npn), the ratio ‖Wn‖ρn converges to one in probability. A noncentered counterpart of the theorem allows to obtain asymptotic expressions for eigenvalues of the Erdős–Renyi graphs, which were unknown in the regime npn=Θ(logn). In particular, denoting by An the adjacency matrix of the Erdős–Renyi graph ð'¢(n,pn) and by λ|k|(An) its kth largest (by the absolute value) eigenvalue, under the assumptions limn→∞npn=∞ and limn→∞pn=0 we have (1) (No non‐trivial outliers): if liminfnpnlogn≥1log(4/e)then for any fixed k ≥ 2, |λ|k|(An)|2npn converges to 1 in probability; and (2) (Outliers): if limsupnpnlogn<1log(4/e) then there is ε > 0 such that for any k∈ℕ, we have limn→∞ℙ|λ|k|(An)|2npn>1+ε=1. On a conceptual level, our result reveals similarities in appearance of outliers in spectrum of sparse matrices and the so‐called BBP phase transition phenomenon in deformed Wigner matrices.
In this paper, we study the effect of sparsity on the appearance of outliers in the semi‐circular law. Let be a sequence of random symmetric matrices such that each W n is n  ×  n with i.i.d. entries above and on the main diagonal equidistributed with the product , where is a real centered uniformly bounded random variable of unit variance and b n is an independent Bernoulli random variable with a probability of success p n . Assuming that , we show that for the random sequence given by , the ratio converges to one in probability. A noncentered counterpart of the theorem allows to obtain asymptotic expressions for eigenvalues of the Erdős–Renyi graphs, which were unknown in the regime . In particular, denoting by A n the adjacency matrix of the Erdős–Renyi graph and by its k th largest (by the absolute value) eigenvalue, under the assumptions and we have (1) (No non‐trivial outliers): if then for any fixed k  ≥ 2 , converges to 1 in probability; and (2) (Outliers): if then there is ε  > 0 such that for any , we have . On a conceptual level, our result reveals similarities in appearance of outliers in spectrum of sparse matrices and the so‐called BBP phase transition phenomenon in deformed Wigner matrices.
Author Tikhomirov, Konstantin
Youssef, Pierre
Author_xml – sequence: 1
  givenname: Konstantin
  surname: Tikhomirov
  fullname: Tikhomirov, Konstantin
  organization: Georgia Tech
– sequence: 2
  givenname: Pierre
  surname: Youssef
  fullname: Youssef, Pierre
  email: youssef@lpsm.paris
  organization: Université Paris Diderot
BackLink https://hal.science/hal-03943119$$DView record in HAL
BookMark eNp9kF1LwzAYhYNMcJte-A8KXnnRLV9Lm8sx1AmDgR94GdLkjWZ0bU1aZf_ezomCoFfn8PKcw8sZoUFVV4DQOcETgjGdhqgnFMucHqEh6TWlnOSDvec0lTmjJ2gU4wZjnDHKhmiy7trSQ4iJr5LYgGlDt01q13sdIiRP_rmCkGx1G7yBeIqOnS4jnH3pGD1eXz0slulqfXO7mK9SwxihqeAFSIHZjFgiBMXOFsxlwvLcAp8ZQ5ywzGYZd0yCgIKYTPOscBYDLax1bIwuD70vulRN8FsddqrWXi3nK7W_YSY5I0S-kZ69OLBNqF87iK3a1F2o-vcU5VIyJkWe_TSaUMcYwH3XEqz206l-OvU5Xc9Of7HGt7r1ddUG7cv_Eu--hN3f1erufn5IfAADf4Be
CitedBy_id crossref_primary_10_1007_s00220_021_04167_y
crossref_primary_10_1214_22_AOP1596
crossref_primary_10_1007_s00440_022_01164_7
crossref_primary_10_1007_s00440_025_01423_3
crossref_primary_10_1002_rsa_70011
crossref_primary_10_1007_s00220_023_04918_z
crossref_primary_10_1112_jlms_12954
crossref_primary_10_1016_j_aim_2025_110156
crossref_primary_10_1134_S1064562421060065
crossref_primary_10_1214_23_AAP2023
Cites_doi 10.1214/009117905000000233
10.1016/j.aim.2017.11.001
10.1214/EJP.v16-934
10.1093/acprof:oso/9780199535255.001.0001
10.1007/s00440-011-0397-9
10.2307/1970008
10.1214/11-AIHP459
10.1214/EJP.v16-929
10.1002/rsa.20089
10.1002/cpa.21450
10.1007/BF02579329
10.1214/16-AIHP754
10.1214/11-AOP734
10.1007/s00493-016-3238-8
10.1142/S2010326312500153
10.1007/BF00324852
10.1017/CBO9780511814068
10.1007/s00220-012-1527-7
10.1007/BF00535717
10.1007/s00493-007-2190-z
10.1017/S0001867800010661
10.1007/s10959-016-0686-4
10.1017/9781108231596
10.1016/j.jmva.2005.08.003
10.1007/s00222-018-0817-x
10.1214/aop/1176992372
10.1002/cpa.21629
10.1017/S096354830000420X
10.1007/s00440-015-0632-x
10.1007/s00440-005-0466-z
10.1017/S0963548302005424
10.1007/s00220-007-0209-3
10.1016/j.aim.2011.02.007
10.1512/iumj.2014.63.5432
10.1214/08-AOP394
10.1214/13-AOP855
10.1007/BF02699376
10.1002/rsa.20713
10.1214/10-AIHP410
10.1007/s00440-017-0787-8
ContentType Journal Article
Copyright 2020 Wiley Periodicals LLC.
2021 Wiley Periodicals LLC.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2020 Wiley Periodicals LLC.
– notice: 2021 Wiley Periodicals LLC.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
1XC
DOI 10.1002/rsa.20982
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1098-2418
EndPage 605
ExternalDocumentID oai:HAL:hal-03943119v1
10_1002_rsa_20982
RSA20982
Genre article
GroupedDBID -~X
.3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACIWK
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
FEDTE
FSPIC
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HVGLF
HZ~
H~9
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6L
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWI
RX1
SAMSI
SUPJJ
TN5
TUS
UB1
V2E
V8K
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WOHZO
WQJ
WRC
WWM
WXSBR
WYISQ
XBAML
XG1
XPP
XSW
XV2
ZZTAW
~IA
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
AMVHM
CITATION
O8X
7SC
8FD
JQ2
L7M
L~C
L~D
1XC
ID FETCH-LOGICAL-c3312-64be960351d16620fdb3f76d48de45cc1f6d3d774f39e6eb1c7a47bfd0e2bddf3
IEDL.DBID DRFUL
ISICitedReferencesCount 13
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000593013000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1042-9832
IngestDate Tue Oct 14 20:34:48 EDT 2025
Sun Jul 13 03:19:17 EDT 2025
Tue Nov 18 22:33:19 EST 2025
Sat Nov 29 02:48:13 EST 2025
Wed Jan 22 16:31:19 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3312-64be960351d16620fdb3f76d48de45cc1f6d3d774f39e6eb1c7a47bfd0e2bddf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2499339687
PQPubID 1016429
PageCount 89
ParticipantIDs hal_primary_oai_HAL_hal_03943119v1
proquest_journals_2499339687
crossref_primary_10_1002_rsa_20982
crossref_citationtrail_10_1002_rsa_20982
wiley_primary_10_1002_rsa_20982_RSA20982
PublicationCentury 2000
PublicationDate May 2021
2021-05-00
20210501
2021-05
PublicationDateYYYYMMDD 2021-05-01
PublicationDate_xml – month: 05
  year: 2021
  text: May 2021
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Hoboken
PublicationTitle Random structures & algorithms
PublicationYear 2021
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
– name: Wiley
References 2006; 97
1986; 73
2013; 49
2013; 66
1981; 1
2013; 02
2000; 9
1986; 14
2018; 324
2013; 41
2016; 165
2014; 63
2011; 16
2005; 27
2001; 89
2006; 134
2014; 42
2003; 12
2017; 51
2017; 53
2017; 30
2018; 171
1995; 81
2011; 227
1990
2007; 272
1982; 60
2018; 214
1958; 67
2014; III
2013; 155
2018
2017
2015
2014
2013
2012; 48
2001; 33
2012; 314
2005; 33
2001; 73
2016; 69
2018; 38
2009; 37
2007; 27
e_1_2_16_25_1
e_1_2_16_23_1
e_1_2_16_29_1
e_1_2_16_46_1
e_1_2_16_27_1
e_1_2_16_48_1
e_1_2_16_44_1
e_1_2_16_21_1
e_1_2_16_15_1
e_1_2_16_38_1
e_1_2_16_13_1
e_1_2_16_19_1
e_1_2_16_34_1
e_1_2_16_17_1
e_1_2_16_30_1
e_1_2_16_32_1
e_1_2_16_11_1
e_1_2_16_51_1
e_1_2_16_7_1
e_1_2_16_9_1
e_1_2_16_5_1
Ledoux M. (e_1_2_16_36_1) 2001
e_1_2_16_49_1
e_1_2_16_24_1
e_1_2_16_45_1
e_1_2_16_28_1
e_1_2_16_47_1
e_1_2_16_41_1
e_1_2_16_2_1
e_1_2_16_43_1
e_1_2_16_22_1
e_1_2_16_20_1
e_1_2_16_14_1
e_1_2_16_39_1
e_1_2_16_12_1
e_1_2_16_18_1
e_1_2_16_35_1
e_1_2_16_16_1
e_1_2_16_37_1
e_1_2_16_31_1
Rajagopalan A. B. (e_1_2_16_42_1) 2015
e_1_2_16_52_1
e_1_2_16_33_1
e_1_2_16_10_1
e_1_2_16_50_1
e_1_2_16_8_1
Ash R. (e_1_2_16_3_1) 1990
e_1_2_16_4_1
e_1_2_16_6_1
(e_1_2_16_26_1) 2014
Péché S. (e_1_2_16_40_1) 2014
References_xml – volume: 12
  start-page: 61
  year: 2003
  end-page: 72
  article-title: The largest eigenvalue of sparse random graphs
  publication-title: Combin. Probab. Comput.
– volume: 214
  start-page: 1031
  year: 2018
  end-page: 1080
  article-title: The dimension‐free structure of nonhomogeneous random matrices
  publication-title: Invent. Math.
– volume: 16
  start-page: 1621
  year: 2011
  end-page: 1662
  article-title: Fluctuations of the extreme eigenvalues of finite rank deformations of random matrices
  publication-title: Electron. J. Probab.
– volume: 97
  start-page: 1382
  year: 2006
  end-page: 1408
  article-title: Eigenvalues of large sample covariance matrices of spiked population models
  publication-title: J. Multivariate Anal.
– volume: 63
  start-page: 1875
  year: 2014
  end-page: 1910
  article-title: Exact separation phenomenon for the eigenvalues of large information‐plus‐noise type matrices, and an application to spiked models
  publication-title: Indiana Univ. Math. J.
– volume: 314
  start-page: 587
  year: 2012
  end-page: 640
  article-title: Spectral statistics of Erdős‐‐Rényi graphs II: Eigenvalue spacing and the extreme eigenvalues
  publication-title: Commun. Math. Phys.
– volume: 60
  start-page: 291
  year: 1982
  end-page: 314
  article-title: A chaos hypothesis for some large systems of random equations
  publication-title: Z. Wahrsch. Verw. Gebiete
– volume: 171
  start-page: 543
  year: 2018
  end-page: 616
  article-title: Local law and Tracy‐Widom limit for sparse random matrices
  publication-title: Probab. Theory Related Fields
– volume: 37
  start-page: 1
  year: 2009
  end-page: 47
  article-title: The largest eigenvalues of finite rank deformation of large Wigner matrices: convergence and non universality of the fluctuations
  publication-title: Ann. Probab.
– volume: 67
  start-page: 325
  year: 1958
  end-page: 327
  article-title: On the distribution of the roots of certain symmetric matrices
  publication-title: Ann. Math.
– volume: 66
  start-page: 1663
  year: 2013
  end-page: 1750
  article-title: The isotropic semicircle law and deformation of Wigner matrices
  publication-title: Commun. Pure Appl. Math.
– volume: 27
  start-page: 251
  year: 2005
  end-page: 275
  article-title: Spectral techniques applied to sparse random graphs
  publication-title: Random Structures Algorithms
– volume: 324
  start-page: 40
  year: 2018
  end-page: 83
  article-title: Norms of random matrices: Local and global problems
  publication-title: Adv. Math.
– volume: 33
  start-page: 1643
  year: 2005
  end-page: 1697
  article-title: Phase transition of the largest eigenvalue for nonnull complex sample covariance matrices
  publication-title: Ann. Probab.
– year: 1990
– volume: 38
  start-page: 665
  year: 2018
  end-page: 708
  article-title: A proof of the block model threshold conjecture
  publication-title: Combinatorica
– year: 2018
– volume: 48
  start-page: 107
  year: 2012
  end-page: 133
  article-title: Central limit theorems for eigenvalues of deformations of Wigner matrices
  publication-title: Ann. Inst. Henri Poincaré Probab. Stat.
– volume: 272
  start-page: 185
  year: 2007
  end-page: 228
  article-title: The largest eigenvalue of rank one deformation of large Wigner matrices
  publication-title: Commun. Math. Phys.
– year: 2014
– volume: 73
  year: 2001
– volume: 9
  start-page: 149
  year: 2000
  end-page: 166
  article-title: The expected norm of random matrices
  publication-title: Combin. Probab. Comput.
– volume: 30
  start-page: 1624
  year: 2017
  end-page: 1654
  article-title: Complex outliers of Hermitian random matrices
  publication-title: J. Theoret. Probab.
– volume: 155
  start-page: 231
  year: 2013
  end-page: 263
  article-title: Outliers in the spectrum of iid matrices with bounded rank perturbations
  publication-title: Probab. Theory Related Fields
– volume: III
  start-page: 1159
  year: 2014
  end-page: 1174
  article-title: Deformed ensembles of random matrices
  publication-title: Proc. ICM‐Seoul
– volume: 1
  start-page: 233
  year: 1981
  end-page: 241
  article-title: The eigenvalues of random symmetric matrices
  publication-title: Combinatorica
– volume: 27
  start-page: 721
  year: 2007
  end-page: 736
  article-title: Spectral norm of random matrices
  publication-title: Combinatorica
– volume: 16
  start-page: 1750
  year: 2011
  end-page: 1792
  article-title: Free convolution with a semicircular distribution and eigenvalues of spiked deformations of Wigner matrices
  publication-title: Electron. J. Probab.
– volume: 49
  start-page: 64
  year: 2013
  end-page: 94
  article-title: On finite rank deformations of Wigner matrices
  publication-title: Ann. Inst. Henri Poincaré Probab. Stat.
– volume: 02
  year: 2013
  article-title: On finite rank deformations of Wigner matrices II. Delocalized perturbations
  publication-title: Random Matrices Theory Appl.
– volume: 227
  start-page: 494
  year: 2011
  end-page: 521
  article-title: The eigenvalues and eigenvectors of finite, low rank perturbations of large random matrices
  publication-title: Adv. Math.
– volume: 51
  start-page: 538
  year: 2017
  end-page: 561
  article-title: Concentration and regularization of random graphs
  publication-title: Random Structures Algorithms
– volume: 33
  start-page: 124
  year: 2001
  end-page: 140
  article-title: Sparse random matrices: Spectral edge and statistics of rooted trees
  publication-title: Adv. Appl. Probab.
– volume: 41
  start-page: 2279
  year: 2013
  end-page: 2375
  article-title: Spectral statistics of Erdős‐‐Rényi graphs I: Local semicircle law
  publication-title: Ann. Probab.
– volume: 165
  start-page: 313
  year: 2016
  end-page: 363
  article-title: Outliers in the single ring theorem
  publication-title: Probab. Theory Relat. Fields
– volume: 81
  start-page: 73
  year: 1995
  end-page: 205
  article-title: Concentration of measure and isoperimetric inequalities in product spaces
  publication-title: Inst. Hautes Études Sci. Publ. Math.
– volume: 14
  start-page: 1318
  year: 1986
  end-page: 1328
  article-title: The spectral radius of large random matrices
  publication-title: Ann. Probab.
– volume: 42
  start-page: 1980
  year: 2014
  end-page: 2031
  article-title: The outliers of a deformed Wigner matrix
  publication-title: Ann. Probab.
– volume: 89
  year: 2001
– volume: 53
  start-page: 1241
  year: 2017
  end-page: 1279
  article-title: Spectra of nearly Hermitian random matrices
  publication-title: Ann. Inst. Henri Poincaré Probab. Stat.
– year: 2017
– volume: 73
  start-page: 555
  year: 1986
  end-page: 569
  article-title: Limiting behavior of the norm of products of random matrices and two problems of Geman–Hwang
  publication-title: Probab. Theory Related Fields
– volume: 134
  start-page: 127
  year: 2006
  end-page: 173
  article-title: The largest eigenvalue of small rank perturbations of Hermitian random matrices
  publication-title: Probab. Theory Related Fields
– volume: 69
  start-page: 2131
  year: 2016
  end-page: 2194
  article-title: Outlier eigenvalues for deformed i.i.d. random matrices
  publication-title: Commun. Pure Appl. Math.
– year: 2015
– year: 2013
– ident: e_1_2_16_43_1
– ident: e_1_2_16_5_1
  doi: 10.1214/009117905000000233
– ident: e_1_2_16_44_1
  doi: 10.1016/j.aim.2017.11.001
– ident: e_1_2_16_18_1
  doi: 10.1214/EJP.v16-934
– volume-title: Mathematical Surveys and Monographs
  year: 2001
  ident: e_1_2_16_36_1
– ident: e_1_2_16_14_1
  doi: 10.1093/acprof:oso/9780199535255.001.0001
– ident: e_1_2_16_48_1
  doi: 10.1007/s00440-011-0397-9
– start-page: 1159
  year: 2014
  ident: e_1_2_16_40_1
  article-title: Deformed ensembles of random matrices
  publication-title: Proc. ICM‐Seoul
– ident: e_1_2_16_52_1
  doi: 10.2307/1970008
– ident: e_1_2_16_41_1
  doi: 10.1214/11-AIHP459
– ident: e_1_2_16_9_1
  doi: 10.1214/EJP.v16-929
– ident: e_1_2_16_21_1
  doi: 10.1002/rsa.20089
– ident: e_1_2_16_30_1
  doi: 10.1002/cpa.21450
– ident: e_1_2_16_23_1
  doi: 10.1007/BF02579329
– volume-title: Information theory
  year: 1990
  ident: e_1_2_16_3_1
– ident: e_1_2_16_37_1
  doi: 10.1214/16-AIHP754
– ident: e_1_2_16_20_1
  doi: 10.1214/11-AOP734
– ident: e_1_2_16_38_1
  doi: 10.1007/s00493-016-3238-8
– ident: e_1_2_16_45_1
  doi: 10.1142/S2010326312500153
– ident: e_1_2_16_4_1
  doi: 10.1007/BF00324852
– ident: e_1_2_16_12_1
  doi: 10.1017/CBO9780511814068
– ident: e_1_2_16_19_1
  doi: 10.1007/s00220-012-1527-7
– ident: e_1_2_16_25_1
  doi: 10.1007/BF00535717
– ident: e_1_2_16_50_1
  doi: 10.1007/s00493-007-2190-z
– ident: e_1_2_16_27_1
– ident: e_1_2_16_29_1
  doi: 10.1017/S0001867800010661
– volume-title: Outlier eigenvalue fluctuations of perturbed iid matrices
  year: 2015
  ident: e_1_2_16_42_1
– ident: e_1_2_16_46_1
  doi: 10.1007/s10959-016-0686-4
– ident: e_1_2_16_51_1
  doi: 10.1017/9781108231596
– ident: e_1_2_16_6_1
  doi: 10.1016/j.jmva.2005.08.003
– ident: e_1_2_16_33_1
  doi: 10.1007/s00222-018-0817-x
– ident: e_1_2_16_7_1
– volume-title: Discrete Mathematics and its Applications (Boca Raton)
  year: 2014
  ident: e_1_2_16_26_1
– ident: e_1_2_16_2_1
– ident: e_1_2_16_24_1
  doi: 10.1214/aop/1176992372
– ident: e_1_2_16_13_1
  doi: 10.1002/cpa.21629
– ident: e_1_2_16_47_1
  doi: 10.1017/S096354830000420X
– ident: e_1_2_16_11_1
  doi: 10.1007/s00440-015-0632-x
– ident: e_1_2_16_8_1
– ident: e_1_2_16_39_1
  doi: 10.1007/s00440-005-0466-z
– ident: e_1_2_16_32_1
  doi: 10.1017/S0963548302005424
– ident: e_1_2_16_22_1
  doi: 10.1007/s00220-007-0209-3
– ident: e_1_2_16_28_1
– ident: e_1_2_16_10_1
  doi: 10.1016/j.aim.2011.02.007
– ident: e_1_2_16_15_1
  doi: 10.1512/iumj.2014.63.5432
– ident: e_1_2_16_16_1
  doi: 10.1214/08-AOP394
– ident: e_1_2_16_31_1
  doi: 10.1214/13-AOP855
– ident: e_1_2_16_49_1
  doi: 10.1007/BF02699376
– ident: e_1_2_16_34_1
  doi: 10.1002/rsa.20713
– ident: e_1_2_16_17_1
  doi: 10.1214/10-AIHP410
– ident: e_1_2_16_35_1
  doi: 10.1007/s00440-017-0787-8
SSID ssj0007323
Score 2.4429648
Snippet In this paper, we study the effect of sparsity on the appearance of outliers in the semi‐circular law. Let (Wn)n=1∞ be a sequence of random symmetric matrices...
In this paper, we study the effect of sparsity on the appearance of outliers in the semi‐circular law. Let be a sequence of random symmetric matrices such that...
SourceID hal
proquest
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 517
SubjectTerms BBP phase transition
Convergence
Eigenvalues
Erdos‐Renyi graph
Mathematical analysis
Mathematics
Matrix methods
moment method
outliers
Phase transitions
Probability
Random variables
Sparse matrices
Sparsity
spectral gap
Title Outliers in spectrum of sparse Wigner matrices
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Frsa.20982
https://www.proquest.com/docview/2499339687
https://hal.science/hal-03943119
Volume 58
WOSCitedRecordID wos000593013000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Journals
  customDbUrl:
  eissn: 1098-2418
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007323
  issn: 1042-9832
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFH_M6UEPfovziyIevFSbj6YNnoY6dvCLqeitJE2qg63K6vb3m6RdnaAgeAvpCw3vK--1L78HcESpQGlIjPIKzH1KpPaltr8LZSQzjKTCInDNJqKbm_j5md814Gx6F6bEh6g_uFnLcP7aGriQxekXaOiosLBBPDb-dx4bvaVNmL_odR6vakccEVzW11Psc6O5U2ChAJ_Wi78dR3OvthhyJtKcjVfdgdNZ-ddWV2G5ijO9dqkYa9DQ-TosXdcgrcUGnNyOPwa2E7bXzz1343I0HnpvmRmbbFd7T_2XXI-8oQPx18UmPHYuH867ftU-wU8JQdhnVGqTn5AQKcQYDjIlSRYxRWOlaZimKGOKKBP-ZYRrZnx2GglqJKQCjaVSGdmCZv6W623wlJChRlKwQEVUxExQGkgVxkoQHvIga8HxlItJWmGL2xYXg6RERcaJYUHiWNCCw5r0vQTU-JHIiKJ-biGwu-2rxM4FhJuYB_EJasHeVFJJZXhFYrJJTghncWT25GTy-1uS3n3bDXb-TroLi9hWtbiSxz1oGsnofVhIJx_9YnRQaeAn11Xdjg
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7R3UptD0BbKpZnVPXQS0r8iBNLXFbAaquGbUVZlZtlxw6sBAElwO-v7TygEkiVuFnJRLHm5Rl7_A3AF0olymNilVdiHlKiTKiMOy5UiSowUhrLyDebSGaz9OyM_1qC_e4uTIMP0W-4Ocvw_toZuNuQ3ntADa1qhxvEU-uAh9SqUTyA4eHJZJ71njghuCmwpzjkVnU7ZKEI7_Uf_7Mevbpw1ZCPQs3HAatfcSYrL5vrKiy3kWYwblTjPSyZ8gO8O-5hWuuP8O3n3e2l64UdLMrA37ms7q6C68KObb5rgj-L89JUwZWH8Tf1GswnR6cH07BtoBDmhCAcMqqMzVBIjDRiDEeFVqRImKapNjTOc1QwTbQNAAvCDbNeO08ktTLSkcFK64J8gkF5XZp1CLRUsUFKskgnVKZMUhopHadaEh7zqBjB146NIm_RxV2Ti0vR4CJjYVkgPAtG8LknvWkgNZ4ksrLo3zsQ7Ok4E-5ZRLiNehC_RyPY6kQlWtOrhc0nOSGcpYmdkxfK838RJ7_HfrDx_6S78GZ6epyJ7Pvsxya8xa7GxRdAbsHASslsw-v8_nZRVzutOv4FI93hfg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swED-ydIz2ofssTZttZuxhL16tD8sW9CW0CxnLspCtrG9CsqQ1kDglbvv3V5IdN4MNBnsT8gmL-9KdffodwHtKJSpS4pRXYh5TokysjP9dqDJlMVIayyQ0m8gmk_zykk87cLq5C1PjQ7Qf3LxlBH_tDdxca3vygBq6rjxuEM-dA96hKWfOLHfOZ8OLceuJM4LrAnuKY-5Ud4MslOCTdvFv59GjK18NuRVqbges4cQZPv2_vT6D_SbSjAa1ajyHjilfwN7XFqa1egkfv93eLHwv7GheRuHO5fp2Ga2sG7t810Q_579Ks46WAcbfVK_gYvjpx9kobhooxAUhCMeMKuMyFJIijRjDidWK2IxpmmtD06JAlmmiXQBoCTfMee0ik9TJSCcGK60tOYBuuSrNIURaqtQgJVmiMypzJilNlE5zLQlPeWJ78GHDRlE06OK-ycVC1LjIWDgWiMCCHrxrSa9rSI0_EjlZtM89CPZoMBZ-LiHcRT2I36Ee9DeiEo3pVcLlk5wQzvLM7SkI5e9vEbPvgzA4-nfSt_Bkej4U48-TL8ewi32JS6h_7EPXCcm8hsfF3c28Wr9ptPEe26ng-Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Outliers+in+spectrum+of+sparse+Wigner+matrices&rft.jtitle=Random+structures+%26+algorithms&rft.au=Tikhomirov%2C+Konstantin&rft.au=Youssef%2C+Pierre&rft.date=2021-05-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1042-9832&rft.eissn=1098-2418&rft.volume=58&rft.issue=3&rft.spage=517&rft.epage=605&rft_id=info:doi/10.1002%2Frsa.20982&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1042-9832&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1042-9832&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1042-9832&client=summon