Outliers in spectrum of sparse Wigner matrices

In this paper, we study the effect of sparsity on the appearance of outliers in the semi‐circular law. Let (Wn)n=1∞ be a sequence of random symmetric matrices such that each Wn is n × n with i.i.d. entries above and on the main diagonal equidistributed with the product bnξ, where ξ is a real centere...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Random structures & algorithms Ročník 58; číslo 3; s. 517 - 605
Hlavní autoři: Tikhomirov, Konstantin, Youssef, Pierre
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York John Wiley & Sons, Inc 01.05.2021
Wiley Subscription Services, Inc
Wiley
Témata:
ISSN:1042-9832, 1098-2418
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper, we study the effect of sparsity on the appearance of outliers in the semi‐circular law. Let (Wn)n=1∞ be a sequence of random symmetric matrices such that each Wn is n × n with i.i.d. entries above and on the main diagonal equidistributed with the product bnξ, where ξ is a real centered uniformly bounded random variable of unit variance and bn is an independent Bernoulli random variable with a probability of success pn. Assuming that limn→∞npn=∞, we show that for the random sequence (ρn)n=1∞ given by ρn:=θn+npnθn,θn:=max(maxi≤n‖rowi(Wn)‖22−npn,npn), the ratio ‖Wn‖ρn converges to one in probability. A noncentered counterpart of the theorem allows to obtain asymptotic expressions for eigenvalues of the Erdős–Renyi graphs, which were unknown in the regime npn=Θ(logn). In particular, denoting by An the adjacency matrix of the Erdős–Renyi graph 𝒢(n,pn) and by λ|k|(An) its kth largest (by the absolute value) eigenvalue, under the assumptions limn→∞npn=∞ and limn→∞pn=0 we have (1) (No non‐trivial outliers): if liminfnpnlogn≥1log(4/e) then for any fixed k ≥ 2, |λ|k|(An)|2npn converges to 1 in probability; and (2) (Outliers): if limsupnpnlogn<1log(4/e) then there is ε > 0 such that for any k∈ℕ, we have limn→∞ℙ|λ|k|(An)|2npn>1+ε=1. On a conceptual level, our result reveals similarities in appearance of outliers in spectrum of sparse matrices and the so‐called BBP phase transition phenomenon in deformed Wigner matrices.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1042-9832
1098-2418
DOI:10.1002/rsa.20982