DORY: Automatic End-to-End Deployment of Real-World DNNs on Low-Cost IoT MCUs

The deployment of Deep Neural Networks (DNNs) on end-nodes at the extreme edge of the Internet-of-Things is a critical enabler to support pervasive Deep Learning-enhanced applications. Low-Cost MCU-based end-nodes have limited on-chip memory and often replace caches with scratchpads, to reduce area...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on computers Ročník 70; číslo 8; s. 1253 - 1268
Hlavní autori: Burrello, Alessio, Garofalo, Angelo, Bruschi, Nazareno, Tagliavini, Giuseppe, Rossi, Davide, Conti, Francesco
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York IEEE 01.08.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:0018-9340, 1557-9956
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The deployment of Deep Neural Networks (DNNs) on end-nodes at the extreme edge of the Internet-of-Things is a critical enabler to support pervasive Deep Learning-enhanced applications. Low-Cost MCU-based end-nodes have limited on-chip memory and often replace caches with scratchpads, to reduce area overheads and increase energy efficiency - requiring explicit DMA-based memory transfers between different levels of the memory hierarchy. Mapping modern DNNs on these systems requires aggressive topology-dependent tiling and double-buffering. In this work, we propose DORY ( Deployment Oriented to memoRY ) - an automatic tool to deploy DNNs on low cost MCUs with typically less than 1MB of on-chip SRAM memory. DORY abstracts tiling as a Constraint Programming (CP) problem: it maximizes L1 memory utilization under the topological constraints imposed by each DNN layer. Then, it generates ANSI C code to orchestrate off- and on-chip transfers and computation phases. Furthermore, to maximize speed, DORY augments the CP formulation with heuristics promoting performance-effective tile sizes. As a case study for DORY, we target GreenWaves Technologies GAP8, one of the most advanced parallel ultra-low power MCU-class devices on the market. On this device, DORY achieves up to 2.5× better MAC/cycle than the GreenWaves proprietary software solution and 18.1× better than the state-of-the-art result on an STM32-H743 MCU on single layers. Using our tool, GAP-8 can perform end-to-end inference of a 1.0-MobileNet-128 network consuming just 63 pJ/MAC on average @ 4.3 fps - 15.4× better than an STM32-H743. We release all our developments - the DORY framework, the optimized backend kernels, and the related heuristics - as open-source software.
AbstractList The deployment of Deep Neural Networks (DNNs) on end-nodes at the extreme edge of the Internet-of-Things is a critical enabler to support pervasive Deep Learning-enhanced applications. Low-Cost MCU-based end-nodes have limited on-chip memory and often replace caches with scratchpads, to reduce area overheads and increase energy efficiency – requiring explicit DMA-based memory transfers between different levels of the memory hierarchy. Mapping modern DNNs on these systems requires aggressive topology-dependent tiling and double-buffering. In this work, we propose DORY ( Deployment Oriented to memoRY ) – an automatic tool to deploy DNNs on low cost MCUs with typically less than 1MB of on-chip SRAM memory. DORY abstracts tiling as a Constraint Programming (CP) problem: it maximizes L1 memory utilization under the topological constraints imposed by each DNN layer. Then, it generates ANSI C code to orchestrate off- and on-chip transfers and computation phases. Furthermore, to maximize speed, DORY augments the CP formulation with heuristics promoting performance-effective tile sizes. As a case study for DORY, we target GreenWaves Technologies GAP8, one of the most advanced parallel ultra-low power MCU-class devices on the market. On this device, DORY achieves up to 2.5× better MAC/cycle than the GreenWaves proprietary software solution and 18.1× better than the state-of-the-art result on an STM32-H743 MCU on single layers. Using our tool, GAP-8 can perform end-to-end inference of a 1.0-MobileNet-128 network consuming just 63 pJ/MAC on average @ 4.3 fps – 15.4× better than an STM32-H743. We release all our developments – the DORY framework, the optimized backend kernels, and the related heuristics – as open-source software.
Author Garofalo, Angelo
Burrello, Alessio
Rossi, Davide
Tagliavini, Giuseppe
Bruschi, Nazareno
Conti, Francesco
Author_xml – sequence: 1
  givenname: Alessio
  orcidid: 0000-0002-6215-8220
  surname: Burrello
  fullname: Burrello, Alessio
  email: alessio.burrello@unibo.it
  organization: Department of Electrical, Electronic and Information Engineering, University of Bologna, Bologna, Italy
– sequence: 2
  givenname: Angelo
  orcidid: 0000-0002-7495-6895
  surname: Garofalo
  fullname: Garofalo, Angelo
  email: angelo.garofalo@unibo.it
  organization: Department of Electrical, Electronic and Information Engineering, University of Bologna, Bologna, Italy
– sequence: 3
  givenname: Nazareno
  surname: Bruschi
  fullname: Bruschi, Nazareno
  email: nazareno.bruschi@unibo.it
  organization: Department of Electrical, Electronic and Information Engineering, University of Bologna, Bologna, Italy
– sequence: 4
  givenname: Giuseppe
  orcidid: 0000-0002-9221-4633
  surname: Tagliavini
  fullname: Tagliavini, Giuseppe
  email: giuseppe.tagliavini@unibo.it
  organization: Department of Computer Science and Engineering, University of Bologna, Bologna, Italy
– sequence: 5
  givenname: Davide
  orcidid: 0000-0002-0651-5393
  surname: Rossi
  fullname: Rossi, Davide
  email: davide.rossi@unibo.it
  organization: Department of Electrical, Electronic and Information Engineering, University of Bologna, Bologna, Italy
– sequence: 6
  givenname: Francesco
  orcidid: 0000-0002-7924-933X
  surname: Conti
  fullname: Conti, Francesco
  email: f.conti@unibo.it
  organization: Department of Electrical, Electronic and Information Engineering, University of Bologna, Bologna, Italy
BookMark eNp9kM9LwzAYhoMoOKdnD14CnrN9aZo08SZ1_oBtgmyIp5J2X6DSNbPJkP33dmx48ODpPXzv873wXJDT1rdIyDWHEedgxot8lEDCRwKU0lqckAGXMmPGSHVKBgBcMyNSOCcXIXwCgErADMjs4fXt447eb6Nf21hXdNKuWPSsD_qAm8bv1thG6h19Q9uwd981_WE-D9S3dOq_We5DpC9-QWf5MlySM2ebgFfHHJLl42SRP7Pp69NLfj9llRAQmXMWLAdljVZVCQatTEtZaSx1iZDpFDNbiUyotFoliSy5dmWJbiUzB2hSFENye_i76fzXFkMsPv22a_vJIpGpyaRKRNK3xodW1fkQOnTFpqvXttsVHIq9s2KRF3tnxdFZT8g_RFXHXotvY2fr5h_u5sDViPi7YoTmimvxAx2HeGA
CODEN ITCOB4
CitedBy_id crossref_primary_10_1109_TCSI_2022_3222862
crossref_primary_10_1016_j_future_2023_07_020
crossref_primary_10_1007_s00607_025_01514_y
crossref_primary_10_1109_TETC_2021_3072337
crossref_primary_10_1109_JETCAS_2023_3328864
crossref_primary_10_1145_3487922
crossref_primary_10_1016_j_iot_2024_101263
crossref_primary_10_1109_JIOT_2021_3091643
crossref_primary_10_1145_3625289
crossref_primary_10_3390_mi12080852
crossref_primary_10_1145_3661820
crossref_primary_10_1016_j_future_2023_07_017
crossref_primary_10_1109_TCSII_2022_3205029
crossref_primary_10_1109_TBCAS_2024_3395534
crossref_primary_10_1109_JSSC_2023_3318301
crossref_primary_10_3390_app14093725
crossref_primary_10_1109_ACCESS_2022_3179047
crossref_primary_10_1109_JETCAS_2022_3170152
crossref_primary_10_1109_TCAD_2022_3232070
crossref_primary_10_3390_electronics12030639
crossref_primary_10_1109_ACCESS_2022_3206782
crossref_primary_10_1109_JIOT_2023_3286276
crossref_primary_10_1109_TBCAS_2021_3122017
crossref_primary_10_1109_JETCAS_2021_3126259
crossref_primary_10_1109_TC_2024_3500369
crossref_primary_10_1109_MCAS_2023_3302182
crossref_primary_10_1109_TC_2024_3354033
crossref_primary_10_1109_JIOT_2023_3331654
crossref_primary_10_1109_TC_2022_3177955
crossref_primary_10_1109_TC_2024_3500360
crossref_primary_10_1109_TBCAS_2024_3478798
crossref_primary_10_1109_JETCAS_2021_3121554
crossref_primary_10_1109_TBCAS_2024_3401858
crossref_primary_10_3390_s23156896
crossref_primary_10_1109_JSSC_2021_3114881
crossref_primary_10_1109_TPDS_2023_3283491
crossref_primary_10_1109_TETC_2023_3322033
crossref_primary_10_1016_j_micpro_2024_105107
crossref_primary_10_1145_3571133
crossref_primary_10_1109_TBCAS_2024_3457522
crossref_primary_10_1109_JSEN_2022_3210773
crossref_primary_10_1109_ACCESS_2022_3146413
crossref_primary_10_1109_MDAT_2025_3573686
crossref_primary_10_3390_jlpea15010008
crossref_primary_10_1109_TBCAS_2025_3573027
crossref_primary_10_1109_TC_2023_3329930
crossref_primary_10_1109_TCSI_2024_3365952
crossref_primary_10_1109_ACCESS_2024_3380472
crossref_primary_10_1109_JIOT_2024_3431913
crossref_primary_10_3390_electronics13142822
crossref_primary_10_1371_journal_pone_0299435
crossref_primary_10_1109_TCAD_2024_3443718
crossref_primary_10_1109_TCSI_2024_3359044
Cites_doi 10.1145/3007787.3001177
10.1109/CICC.2017.7993626
10.21105/joss.01746
10.1145/3358198
10.1109/CVPR.2018.00474
10.1098/rsta.2019.0155
10.1145/3373376.3378514
10.1007/978-3-030-18338-7_19
10.1109/TCSII.2020.2983648
10.1109/JSSC.2019.2912307
10.1109/ISPASS.2019.00042
10.1109/MCSoC.2015.45
10.1007/s11265-015-1070-9
10.1109/CVPRW.2018.00103
10.1109/MM.2020.2985963
10.1109/JIOT.2019.2917066
10.1109/JIOT.2018.2844296
10.1109/ASAP.2018.8445101
10.1016/j.micpro.2013.04.006
10.1109/MCOM.2017.1600587CM
10.1109/TBCAS.2019.2959160
10.1109/ICCD.2013.6657019
10.1109/DATE.2011.5763085
10.1109/ISSCC.2017.7870349
10.1109/TCSI.2017.2698019
10.1109/TVLSI.2017.2654506
10.1109/CODESISSS.2018.8525915
10.1016/j.dcan.2017.10.002
10.1145/2597917.2597922
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TC.2021.3066883
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1557-9956
EndPage 1268
ExternalDocumentID 10_1109_TC_2021_3066883
9381618
Genre orig-research
GrantInformation_xml – fundername: Artificial Intelligence for Digital Industry
  grantid: 826060
– fundername: WiPLASH
  grantid: 863337
– fundername: EU Horizon 2020 Research and Innovation projects OPRECOMP
  grantid: 732631
GroupedDBID --Z
-DZ
-~X
.DC
0R~
29I
4.4
5GY
6IK
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
ACNCT
AENEX
AETEA
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
IEDLZ
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
TWZ
UHB
UPT
XZL
YZZ
AAYXX
ABUFD
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c330t-ffa0a106a986cb09ea54b5c8eb8be0784e7ac37364cd225b18fbbefd57f0e94e3
IEDL.DBID RIE
ISICitedReferencesCount 88
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000671513900010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0018-9340
IngestDate Mon Jun 30 05:42:12 EDT 2025
Sat Nov 29 01:35:42 EST 2025
Tue Nov 18 22:22:11 EST 2025
Wed Aug 27 02:26:38 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c330t-ffa0a106a986cb09ea54b5c8eb8be0784e7ac37364cd225b18fbbefd57f0e94e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6215-8220
0000-0002-7495-6895
0000-0002-0651-5393
0000-0002-7924-933X
0000-0002-9221-4633
OpenAccessLink http://hdl.handle.net/11585/846999
PQID 2549756232
PQPubID 85452
PageCount 16
ParticipantIDs ieee_primary_9381618
crossref_primary_10_1109_TC_2021_3066883
crossref_citationtrail_10_1109_TC_2021_3066883
proquest_journals_2549756232
PublicationCentury 2000
PublicationDate 2021-08-01
PublicationDateYYYYMMDD 2021-08-01
PublicationDate_xml – month: 08
  year: 2021
  text: 2021-08-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on computers
PublicationTitleAbbrev TC
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref34
ref37
ref15
tan (ref32) 2019
ref14
ref31
han (ref41) 2016
ref11
cecconi (ref19) 2017
ref2
ref1
lai (ref36) 2018
garofalo (ref12) 2020
ref17
abadi (ref39) 2015
ref38
pullini (ref45) 2017
ref18
choi (ref35) 2018
conti (ref40) 2020
lin (ref33) 2020
howard (ref30) 2017
(ref16) 2019
ref23
ref26
ref25
ref20
ref42
david (ref21) 2021
ref44
ref43
ref28
ref27
ref29
ivanov (ref24) 2020
ref8
ref7
ref9
ref4
ref3
ref6
ref5
conti (ref10) 2015
(ref22) 2017
References_xml – year: 2021
  ident: ref21
  article-title: TensorFlow lite micro: Embedded machine learning on TinyML systems
– year: 2018
  ident: ref35
  article-title: PACT: Parameterized clipping activation for quantized neural networks
– ident: ref9
  doi: 10.1145/3007787.3001177
– start-page: 683
  year: 2015
  ident: ref10
  article-title: A ultra-low-energy convolution engine for fast brain-inspired vision in multicore clusters
  publication-title: Proc Des Autom Test Eur Conf Exhib
– ident: ref11
  doi: 10.1109/CICC.2017.7993626
– ident: ref29
  doi: 10.21105/joss.01746
– ident: ref25
  doi: 10.1145/3358198
– ident: ref31
  doi: 10.1109/CVPR.2018.00474
– ident: ref14
  doi: 10.1098/rsta.2019.0155
– ident: ref27
  doi: 10.1145/3373376.3378514
– ident: ref7
  doi: 10.1007/978-3-030-18338-7_19
– ident: ref34
  doi: 10.1109/TCSII.2020.2983648
– year: 2020
  ident: ref24
  article-title: Data movement is all you need: A case study of transformer networks
– year: 2016
  ident: ref41
  article-title: Deep compression: Compressing deep neural networks with pruning, trained quantization and huffman coding
– ident: ref42
  doi: 10.1109/JSSC.2019.2912307
– ident: ref28
  doi: 10.1109/ISPASS.2019.00042
– ident: ref18
  doi: 10.1109/MCSoC.2015.45
– year: 2019
  ident: ref16
  article-title: Cypress DRAM
– ident: ref15
  doi: 10.1007/s11265-015-1070-9
– start-page: 1
  year: 2017
  ident: ref45
  article-title: $\mu$?DMA: An autonomous I/O subsystem for IoT end-nodes
  publication-title: Proc 27th Int Symp Power Timing Model Optim Simul
– ident: ref8
  doi: 10.1109/CVPRW.2018.00103
– ident: ref26
  doi: 10.1109/MM.2020.2985963
– year: 2015
  ident: ref39
  article-title: Tensorflow lite for microcontrollers
– year: 2020
  ident: ref33
  article-title: MCUNet: Tiny deep learning on IoT devices
– ident: ref5
  doi: 10.1109/JIOT.2019.2917066
– ident: ref4
  doi: 10.1109/JIOT.2018.2844296
– ident: ref23
  doi: 10.1109/ASAP.2018.8445101
– start-page: 186
  year: 2020
  ident: ref12
  article-title: XpulpNN: Accelerating quantized neural networks on RISC-V processors through ISA extensions
  publication-title: Proc Des Autom Test Eur Conf
– ident: ref17
  doi: 10.1016/j.micpro.2013.04.006
– start-page: 89
  year: 2017
  ident: ref19
  article-title: Optimal tiling strategy for memory bandwidth reduction for CNNs
  publication-title: Proc Int Conf Adv Concepts Intell Vis Syst
– ident: ref2
  doi: 10.1109/MCOM.2017.1600587CM
– start-page: 6105
  year: 2019
  ident: ref32
  article-title: EfficientNet: Rethinking model scaling for convolutional neural networks
– year: 2018
  ident: ref36
  article-title: CMSIS-NN: Efficient neural network kernels for arm Cortex-M CPUs
– ident: ref3
  doi: 10.1109/TBCAS.2019.2959160
– year: 2017
  ident: ref22
  article-title: X-CUBE-AI
– year: 2020
  ident: ref40
  article-title: Technical Report: NEMO DNN quantization for deployment model
– ident: ref20
  doi: 10.1109/ICCD.2013.6657019
– year: 2017
  ident: ref30
  article-title: MobileNets: Efficient convolutional neural networks for mobile vision applications
– ident: ref43
  doi: 10.1109/DATE.2011.5763085
– ident: ref13
  doi: 10.1109/ISSCC.2017.7870349
– ident: ref6
  doi: 10.1109/TCSI.2017.2698019
– ident: ref38
  doi: 10.1109/TVLSI.2017.2654506
– ident: ref37
  doi: 10.1109/CODESISSS.2018.8525915
– ident: ref1
  doi: 10.1016/j.dcan.2017.10.002
– ident: ref44
  doi: 10.1145/2597917.2597922
SSID ssj0006209
Score 2.645775
Snippet The deployment of Deep Neural Networks (DNNs) on end-nodes at the extreme edge of the Internet-of-Things is a critical enabler to support pervasive Deep...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1253
SubjectTerms Acceleration
Artificial neural networks
C (programming language)
Chips (memory devices)
Computer architecture
Deep neural networks
DNN acceleration
edge computing
Internet of Things
IoT
Low cost
Machine learning
Memory management
Micromechanical devices
Nodes
Open source software
Software
Source code
Static random access memory
System-on-chip
Task analysis
Tiling
Topology
Title DORY: Automatic End-to-End Deployment of Real-World DNNs on Low-Cost IoT MCUs
URI https://ieeexplore.ieee.org/document/9381618
https://www.proquest.com/docview/2549756232
Volume 70
WOSCitedRecordID wos000671513900010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1557-9956
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006209
  issn: 0018-9340
  databaseCode: RIE
  dateStart: 19680101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT9swFH6CaodxGBs_tEKHfNiBw1ziOo1tbigFMQnKhAqCU2Q7LxLSFE8kZf_-bDetmIADp-RgJ5G_vOfv2c_vA_iuucaqTAVVknGachxTLTNFmdAJt54ByCidcHshplN5d6d-rcGP1VkYRIzJZzgMt3Evv3R2HpbKjlTY5WJyHdaFEIuzWiuvmy3TOZg3YJ4mXRkflqijWe7jwBEbenacScn_m4GipMoLPxwnl7PN933WZ_jUkUhyskD9C6xhvQWbS4EG0tnrFmw8qza4DZeTq-v7Y3Iyb12s00pO65K2jvoLmWAQ_g3vIa4i15490phmQybTaUNcTS7cX5q7piU_3Yxc5jfNDtycnc7yc9qpKVDLedLSqtKJ9gGgVjKzJlGox6kZW4lGGvREIUWhLRc8S23pjdwwWRnjcRyLKkGVIt-FXu1q_AoER5l3E55a8VKmZsS0j3MzZlB5bqC1Un0YLke4sF2p8aB48buIIUeiilleBEiKDpI-HK46_FlU2Xi76XZAYNWsG_w-DJYQFp0VNkUIfkUgeKO913vtw8fw7EVC3wB67eMcv8EH-9Q-NI8H8Qf7BxhiyjQ
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3BbtQwEB2VgkR7oNBSsVDABw4c8DaOncTmVmVbtWI3oCpF5RTZzkRCqpKqydLfx_ZmVyDgwCk52HLk5xm_icfzAN5prrGpRUaVZJwKjgnVMlWUZTri1jEAGaQTvs6zopDX1-rLFnzY3IVBxJB8hlP_Gs7y684u_a-yY-VPuZh8AA8TIWK2uq218bvpOqGDORPmIhoL-bBIHZe5iwRjNnX8OJWS_7YHBVGVPzxx2F7O9v7vw57Ck5FGkpMV7s9gC9t92FtLNJDRYvdh95d6gwewmH2-_PaRnCyHLlRqJadtTYeOugeZoZf-9eOQriGXjj_SkGhDZkXRk64l8-6e5l0_kIuuJIv8qn8OV2enZX5ORz0FajmPBto0OtIuBNRKptZECnUiTGIlGmnQUQWBmbY846mwtTNzw2RjjEMyyZoIlUB-CNtt1-ILIBinzlE4csVrKUzMtIt0U2ZQOXagtVITmK5nuLJjsXGveXFThaAjUlWZVx6SaoRkAu83HW5XdTb-3fTAI7BpNk7-BI7WEFajHfaVD38zT_Hil3_v9RYen5eLeTW_KD69gh0_ziq97wi2h7slvoZH9sfwvb97ExbbT8nJzXs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DORY%3A+Automatic+End-to-End+Deployment+of+Real-World+DNNs+on+Low-Cost+IoT+MCUs&rft.jtitle=IEEE+transactions+on+computers&rft.au=Burrello%2C+Alessio&rft.au=Garofalo%2C+Angelo&rft.au=Bruschi%2C+Nazareno&rft.au=Tagliavini%2C+Giuseppe&rft.date=2021-08-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0018-9340&rft.eissn=1557-9956&rft.volume=70&rft.issue=8&rft.spage=1253&rft_id=info:doi/10.1109%2FTC.2021.3066883&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9340&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9340&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9340&client=summon