The complexity of dominating set reconfiguration
Suppose that we are given two dominating sets Ds and Dt of a graph G whose cardinalities are at most a given threshold k. Then, we are asked whether there exists a sequence of dominating sets of G between Ds and Dt such that each dominating set in the sequence is of cardinality at most k and can be...
Saved in:
| Published in: | Theoretical computer science Vol. 651; pp. 37 - 49 |
|---|---|
| Main Authors: | , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier B.V
25.10.2016
|
| Subjects: | |
| ISSN: | 0304-3975, 1879-2294 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Suppose that we are given two dominating sets Ds and Dt of a graph G whose cardinalities are at most a given threshold k. Then, we are asked whether there exists a sequence of dominating sets of G between Ds and Dt such that each dominating set in the sequence is of cardinality at most k and can be obtained from the previous one by either adding or deleting exactly one vertex. This decision problem is known to be PSPACE-complete in general. In this paper, we study the complexity of this problem from the viewpoint of graph classes. We first prove that the problem remains PSPACE-complete even for planar graphs, bounded bandwidth graphs, split graphs, and bipartite graphs. We then give a general scheme to construct linear-time algorithms and show that the problem can be solved in linear time for cographs, forests, and interval graphs. Furthermore, for these tractable cases, we can obtain a desired sequence if it exists such that the number of additions and deletions is bounded by O(n), where n is the number of vertices in the input graph. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ISSN: | 0304-3975 1879-2294 |
| DOI: | 10.1016/j.tcs.2016.08.016 |