Approximation algorithms for the generalized incremental knapsack problem

We introduce and study a discrete multi-period extension of the classical knapsack problem, dubbed generalized incremental knapsack . In this setting, we are given a set of n items, each associated with a non-negative weight, and T time periods with non-decreasing capacities W 1 ≤ ⋯ ≤ W T . When ite...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical programming Jg. 198; H. 1; S. 27 - 83
Hauptverfasser: Faenza, Yuri, Segev, Danny, Zhang, Lingyi
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 01.03.2023
Springer
Schlagworte:
ISSN:0025-5610, 1436-4646
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract We introduce and study a discrete multi-period extension of the classical knapsack problem, dubbed generalized incremental knapsack . In this setting, we are given a set of n items, each associated with a non-negative weight, and T time periods with non-decreasing capacities W 1 ≤ ⋯ ≤ W T . When item i is inserted at time t , we gain a profit of p it ; however, this item remains in the knapsack for all subsequent periods. The goal is to decide if and when to insert each item, subject to the time-dependent capacity constraints, with the objective of maximizing our total profit. Interestingly, this setting subsumes as special cases a number of recently-studied incremental knapsack problems, all known to be strongly NP-hard. Our first contribution comes in the form of a polynomial-time ( 1 2 - ϵ ) -approximation for the generalized incremental knapsack problem. This result is based on a reformulation as a single-machine sequencing problem, which is addressed by blending dynamic programming techniques and the classical Shmoys–Tardos algorithm for the generalized assignment problem. Combined with further enumeration-based self-reinforcing ideas and new structural properties of nearly-optimal solutions, we turn our algorithm into a quasi-polynomial time approximation scheme (QPTAS). Hence, under widely believed complexity assumptions, this finding rules out the possibility that generalized incremental knapsack is APX-hard.
AbstractList We introduce and study a discrete multi-period extension of the classical knapsack problem, dubbed generalized incremental knapsack. In this setting, we are given a set of n items, each associated with a non-negative weight, and T time periods with non-decreasing capacities [Formula omitted]. When item i is inserted at time t, we gain a profit of [Formula omitted]; however, this item remains in the knapsack for all subsequent periods. The goal is to decide if and when to insert each item, subject to the time-dependent capacity constraints, with the objective of maximizing our total profit. Interestingly, this setting subsumes as special cases a number of recently-studied incremental knapsack problems, all known to be strongly NP-hard. Our first contribution comes in the form of a polynomial-time [Formula omitted]-approximation for the generalized incremental knapsack problem. This result is based on a reformulation as a single-machine sequencing problem, which is addressed by blending dynamic programming techniques and the classical Shmoys-Tardos algorithm for the generalized assignment problem. Combined with further enumeration-based self-reinforcing ideas and new structural properties of nearly-optimal solutions, we turn our algorithm into a quasi-polynomial time approximation scheme (QPTAS). Hence, under widely believed complexity assumptions, this finding rules out the possibility that generalized incremental knapsack is APX-hard.
We introduce and study a discrete multi-period extension of the classical knapsack problem, dubbed generalized incremental knapsack . In this setting, we are given a set of n items, each associated with a non-negative weight, and T time periods with non-decreasing capacities W 1 ≤ ⋯ ≤ W T . When item i is inserted at time t , we gain a profit of p it ; however, this item remains in the knapsack for all subsequent periods. The goal is to decide if and when to insert each item, subject to the time-dependent capacity constraints, with the objective of maximizing our total profit. Interestingly, this setting subsumes as special cases a number of recently-studied incremental knapsack problems, all known to be strongly NP-hard. Our first contribution comes in the form of a polynomial-time ( 1 2 - ϵ ) -approximation for the generalized incremental knapsack problem. This result is based on a reformulation as a single-machine sequencing problem, which is addressed by blending dynamic programming techniques and the classical Shmoys–Tardos algorithm for the generalized assignment problem. Combined with further enumeration-based self-reinforcing ideas and new structural properties of nearly-optimal solutions, we turn our algorithm into a quasi-polynomial time approximation scheme (QPTAS). Hence, under widely believed complexity assumptions, this finding rules out the possibility that generalized incremental knapsack is APX-hard.
Audience Academic
Author Faenza, Yuri
Segev, Danny
Zhang, Lingyi
Author_xml – sequence: 1
  givenname: Yuri
  orcidid: 0000-0002-3148-2159
  surname: Faenza
  fullname: Faenza, Yuri
  organization: Department of Industrial Engineering and Operations Research, Columbia University
– sequence: 2
  givenname: Danny
  orcidid: 0000-0003-4684-2185
  surname: Segev
  fullname: Segev, Danny
  email: segevdanny@tauex.tau.ac.il
  organization: Department of Statistics and Operations Research, School of Mathematical Sciences, Tel Aviv University
– sequence: 3
  givenname: Lingyi
  orcidid: 0000-0001-7562-4449
  surname: Zhang
  fullname: Zhang, Lingyi
  organization: Department of Industrial Engineering and Operations Research, Columbia University
BookMark eNp90M1KxDAQwPEgCq4fL-CpL9B10jRpe1zEL1jwoueQnU5qtE1LUkF9euPWk4clh0DIb2D-Z-zYj54Yu-Kw5gDVdeTAocqh4DnwSsq8OmIrXgqVl6pUx2wFUMhcKg6n7CzGNwDgoq5X7HEzTWH8dIOZ3egz03djcPPrEDM7hmx-pawjT8H07pvazHkMNJCfTZ-9ezNFg-9Z8ruehgt2Yk0f6fLvPmcvd7fPNw_59un-8WazzVEImHNCVXFLLRVQYtOUotg1KJHXqkZJvGmgkqaxyK3kiG3dKkKjJFqxAwtgxTlbL3M705N23o5zMJhOS4PDlMW69L6pRM1VLQASqBeAYYwxkNXo5v26Cbpec9C_DfXSUKeGet9QV4kW_-gUUqrwdRiJBcX02XcU9Nv4EXxqckj9AKj1h7I
CitedBy_id crossref_primary_10_1111_poms_14040
crossref_primary_10_1007_s10107_023_02033_4
Cites_doi 10.1007/978-3-662-44777-2_19
10.1145/3188745.3188894
10.1137/1.9781611973730.89
10.1007/978-3-030-32177-2_11
10.4153/CJM-1956-045-5
10.1007/978-3-319-28684-6_2
10.1137/1.9781611973730.5
10.1287/moor.1110.0499
10.1145/2000807.2000816
10.1145/174644.174650
10.1007/978-3-662-43948-7_6
10.1016/j.dam.2012.05.027
10.1007/s10479-008-0338-x
10.1137/120868360
10.1016/j.disopt.2021.100647
10.1145/1132516.1132617
10.1145/2455.214106
10.1016/j.jcss.2019.02.003
10.1016/j.orl.2005.05.006
10.1007/978-3-540-76796-1_21
10.1145/3242769
10.1007/BF01585178
10.1007/978-3-319-71924-5_19
10.1137/S0097539700382820
10.1016/j.ipl.2006.06.003
10.1007/s10107-020-01504-2
10.1007/978-3-642-33090-2_48
10.1109/SFCS.2002.1181973
10.1016/j.jda.2018.11.005
10.4086/toc.2010.v006a011
10.1007/978-3-319-96151-4_14
10.1016/j.dam.2019.02.016
ContentType Journal Article
Copyright Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2021
COPYRIGHT 2023 Springer
Copyright_xml – notice: Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2021
– notice: COPYRIGHT 2023 Springer
DBID AAYXX
CITATION
DOI 10.1007/s10107-021-01755-7
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISSN 1436-4646
EndPage 83
ExternalDocumentID A738168300
10_1007_s10107_021_01755_7
GrantInformation_xml – fundername: Office of Naval Research
  grantid: N00014-20-1-2091
  funderid: http://dx.doi.org/10.13039/100000006
– fundername: Israel Science Foundation
  grantid: 148/16; 1407/20
GroupedDBID --K
--Z
-52
-5D
-5G
-BR
-EM
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1B1
1N0
1OL
1SB
203
28-
29M
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
6TJ
78A
7WY
88I
8AO
8FE
8FG
8FL
8TC
8UJ
8VB
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACPIV
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMOZ
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHQJS
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
B0M
BA0
BAPOH
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EAD
EAP
EBA
EBLON
EBR
EBS
EBU
ECS
EDO
EIOEI
EJD
EMI
EMK
EPL
ESBYG
EST
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I-F
I09
IAO
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K1G
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
LAS
LLZTM
M0C
M0N
M2P
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQ-
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9R
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
QWB
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RPZ
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TH9
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WK8
XPP
YLTOR
Z45
Z5O
Z7R
Z7S
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8R
Z8T
Z8W
Z92
ZL0
ZMTXR
ZWQNP
~02
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADXHL
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
ID FETCH-LOGICAL-c330t-ec671fede204c99432b9c5c1868c5e199075a9fc1f51ccd8d6eca65cf3b0f00f3
IEDL.DBID RSV
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000749079300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0025-5610
IngestDate Sat Nov 29 10:29:31 EST 2025
Sat Nov 29 03:34:03 EST 2025
Tue Nov 18 21:51:25 EST 2025
Fri Feb 21 02:45:40 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords 90C10
Approximation algorithms
68W25
Sequencing
Incremental optimization
90B35
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c330t-ec671fede204c99432b9c5c1868c5e199075a9fc1f51ccd8d6eca65cf3b0f00f3
ORCID 0000-0003-4684-2185
0000-0001-7562-4449
0000-0002-3148-2159
PageCount 57
ParticipantIDs gale_infotracacademiconefile_A738168300
crossref_citationtrail_10_1007_s10107_021_01755_7
crossref_primary_10_1007_s10107_021_01755_7
springer_journals_10_1007_s10107_021_01755_7
PublicationCentury 2000
PublicationDate 20230300
2023-03-00
20230301
PublicationDateYYYYMMDD 2023-03-01
PublicationDate_xml – month: 3
  year: 2023
  text: 20230300
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
PublicationSubtitle A Publication of the Mathematical Optimization Society
PublicationTitle Mathematical programming
PublicationTitleAbbrev Math. Program
PublicationYear 2023
Publisher Springer Berlin Heidelberg
Springer
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer
References FordLRFulkersonDRMaximal flow through a networkCan. J. Math.195683994047925110.4153/CJM-1956-045-50073.40203
ChekuriCKhannaSA polynomial time approximation scheme for the multiple knapsack problemSIAM J. Comput.2005353713728220145510.1137/S00975397003828201095.68035
Groß, M., Kappmeier, J.P.W., Schmidt, D.R., Schmidt, M.: Approximating earliest arrival flows in arbitrary networks. In: Proceedings of the 20th Annual European Symposium on Algorithms, pp. 551–562 (2012)
FarahaniRZDreznerZAsgariNSingle facility location and relocation problem with time dependent weights and discrete planning horizonAnn. Oper. Res.2009167353368250649510.1007/s10479-008-0338-x1166.90011
CalinescuGChakrabartiAKarloffHRabaniYAn improved approximation algorithm for resource allocationACM Trans. Algorithms20117417283698710.1145/2000807.20008161295.68209
NickelSSaldanha-da GamaFLaporteGNickelSSaldanha da GamaFMulti-period facility locationLocation Science2019BerlinSpringer30332610.1007/978-3-030-32177-2_1107554952
Bansal, N., Chakrabarti, A., Epstein, A., Schieber, B.: A quasi-PTAS for unsplittable flow on line graphs. In: Proceedings of the 38th ACM Symposium on Theory of Computing, pp. 721–729 (2006)
Batra, J., Garg, N., Kumar, A., Mömke, T., Wiese, A.: New approximation schemes for unsplittable flow on a path. In: Proceedings of the 26th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 47–58 (2015)
AnagnostopoulosAGrandoniFLeonardiSWieseAA mazing 2+ϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2+\epsilon $$\end{document} approximation for unsplittable flow on a pathACM Trans. Algorithms2018144123387432710.1145/32427691422.68278
EpsteinLOn bin packing with clustering and bin packing with delaysDiscrete Optim.202141426954710.1016/j.disopt.2021.10064707411462
BonsmaPSchulzJWieseAA constant-factor approximation algorithm for unsplittable flow on pathsSIAM J. Comput.2014432767799350468210.1137/1208683601297.68185
Grandoni, F., Ingala, S., Uniyal, S.: Improved approximation algorithms for unsplittable flow on a path with time windows. In: Proceedings of the 13th International Workshop on Approximation and Online Algorithms, pp. 13–24 (2015)
Bienstock, D., Sethuraman, J., Ye, C.: Approximation algorithms for the incremental knapsack problem via disjunctive programming (2013). arXiv:1311.4563
Adjiashvili, D., Bosio, S., Weismantel, R., Zenklusen, R.: Time-expanded packings. In: Proceedings of the 41st International Colloquium on Automata, Languages and Programming, pp. 64–76 (2014)
AkridaECCzyzowiczJGasieniecLKusznerLSpirakisPGTemporal flows in temporal networksJ. Comput. Syst. Sci.20191034660394423710.1016/j.jcss.2019.02.0031423.68324
CohenRKatzirLRazDAn efficient approximation for the generalized assignment problemInf. Process. Lett.20061004162166225677210.1016/j.ipl.2006.06.0031185.68853
Lin, M., Jaillet, P.: On the quickest flow problem in dynamic networks—a parametric min-cost flow approach. In: Proceedings of the 26th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1343–1356 (2015)
Della CroceFPferschyUScatamacchiaRApproximating the 3-period incremental knapsack problemJ. Discrete Algorithms2018525569390790510.1016/j.jda.2018.11.0051416.90041
FleischerLGoemansMXMirrokniVSSviridenkoMTight approximation algorithms for maximum separable assignment problemsMath. Oper. Res.2011363416431283239910.1287/moor.1110.04991238.68187
Ye, C.: On the trade-offs between modeling power and algorithmic complexity. Ph.D. Thesis, Columbia University (2016)
HochbaumDSMaassWApproximation schemes for covering and packing problems in image processing and VLSIJ. ACM198532113013683233510.1145/2455.2141060633.68027
GrafLHarksTSeringLDynamic flows with adaptive route choiceMath. Program.2020183309335413782210.1007/s10107-020-01504-21448.90024
BolandNKalinowskiTWatererHZhengLScheduling arc maintenance jobs in a network to maximize total flow over timeDiscrete Appl. Math.201416313452313330510.1016/j.dam.2012.05.0271297.90031
Faenza, Y., Malinovic, I.: A PTAS for the time-invariant incremental knapsack problem. In: Proceedings of the 5th International Symposium on Combinatorial Optimization, pp. 157–169 (2018)
Aouad, A., Segev, D.: An approximate dynamic programming approach to the incremental knapsack problem (2020). Oper. Res. (forthcoming)
Della CroceFPferschyUScatamacchiaROn approximating the incremental knapsack problemDiscrete Appl. Math.20192642642396184910.1016/j.dam.2019.02.0161423.90218
ShmoysDBTardosÉAn approximation algorithm for the generalized assignment problemMath. Program.199362461474125188610.1007/BF015851780804.90077
Sharp, A.M.: Incremental algorithms: solving problems in a changing world. Ph.D. Thesis, Department of Computer Science, Cornell University (2007)
BakerBSApproximation algorithms for NP-complete problems on planar graphsJ. ACM1994411153180136919710.1145/174644.1746500807.68067
Chakaravarthy, V.T., Choudhury, A.R., Gupta, S., Roy, S., Sabharwal, Y.: Improved algorithms for resource allocation under varying capacity. In: Proceedings for the 22nd Annual European Symposium on Algorithms, pp. 222–234 (2014)
Ismaili, A.: Routing games over time with FIFO policy. In: Proceedings of the 13th Conference on Web and Internet Economics, pp. 266–280 (2017)
Grandoni, F., Mömke, T., Wiese, A., Zhou, H.: A (5/3+ϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$5/3+\epsilon $$\end{document})-approximation for unsplittable flow on a path: placing small tasks into boxes. In: Proceedings of the 50th Annual ACM Symposium on Theory of Computing, pp. 607–619 (2018)
Caprara, A.: Packing 2-dimensional bins in harmony. In: Proceedings of the 43rd Annual IEEE Symposium on Foundations of Computer Science, pp. 490–499 (2002)
NutovZBeniaminyIYusterRA (1-1/e)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(1-1/e)$$\end{document}-approximation algorithm for the generalized assignment problemOper. Res. Lett.2006343283288220434110.1016/j.orl.2005.05.0061110.90065
FeigeUVondrákJThe submodular welfare problem with demand queriesTheory Comput.20106247290277007810.4086/toc.2010.v006a0111213.68703
SkutellaMCookWLovászLVygenJAn introduction to network flows over timeResearch Trends in Combinatorial Optimization2009BerlinSpringer45148210.1007/978-3-540-76796-1_21
Hartline, J.R.K.: Incremental optimization. Ph.D. Thesis, Department of Computer Science, Cornell University (2008)
1755_CR37
1755_CR13
F Della Croce (1755_CR17) 2019; 264
1755_CR12
Z Nutov (1755_CR33) 2006; 34
1755_CR34
RZ Farahani (1755_CR20) 2009; 167
1755_CR31
C Chekuri (1755_CR14) 2005; 35
DS Hochbaum (1755_CR29) 1985; 32
1755_CR30
L Fleischer (1755_CR22) 2011; 36
P Bonsma (1755_CR10) 2014; 43
EC Akrida (1755_CR2) 2019; 103
N Boland (1755_CR9) 2014; 163
F Della Croce (1755_CR16) 2018; 52
1755_CR19
LR Ford (1755_CR23) 1956; 8
1755_CR28
M Skutella (1755_CR36) 2009
1755_CR27
1755_CR26
1755_CR25
R Cohen (1755_CR15) 2006; 100
DB Shmoys (1755_CR35) 1993; 62
1755_CR8
L Graf (1755_CR24) 2020; 183
G Calinescu (1755_CR11) 2011; 7
1755_CR1
U Feige (1755_CR21) 2010; 6
1755_CR4
1755_CR6
L Epstein (1755_CR18) 2021; 41
1755_CR7
A Anagnostopoulos (1755_CR3) 2018; 14
S Nickel (1755_CR32) 2019
BS Baker (1755_CR5) 1994; 41
References_xml – reference: Chakaravarthy, V.T., Choudhury, A.R., Gupta, S., Roy, S., Sabharwal, Y.: Improved algorithms for resource allocation under varying capacity. In: Proceedings for the 22nd Annual European Symposium on Algorithms, pp. 222–234 (2014)
– reference: HochbaumDSMaassWApproximation schemes for covering and packing problems in image processing and VLSIJ. ACM198532113013683233510.1145/2455.2141060633.68027
– reference: FleischerLGoemansMXMirrokniVSSviridenkoMTight approximation algorithms for maximum separable assignment problemsMath. Oper. Res.2011363416431283239910.1287/moor.1110.04991238.68187
– reference: ChekuriCKhannaSA polynomial time approximation scheme for the multiple knapsack problemSIAM J. Comput.2005353713728220145510.1137/S00975397003828201095.68035
– reference: Bansal, N., Chakrabarti, A., Epstein, A., Schieber, B.: A quasi-PTAS for unsplittable flow on line graphs. In: Proceedings of the 38th ACM Symposium on Theory of Computing, pp. 721–729 (2006)
– reference: SkutellaMCookWLovászLVygenJAn introduction to network flows over timeResearch Trends in Combinatorial Optimization2009BerlinSpringer45148210.1007/978-3-540-76796-1_21
– reference: GrafLHarksTSeringLDynamic flows with adaptive route choiceMath. Program.2020183309335413782210.1007/s10107-020-01504-21448.90024
– reference: FeigeUVondrákJThe submodular welfare problem with demand queriesTheory Comput.20106247290277007810.4086/toc.2010.v006a0111213.68703
– reference: Caprara, A.: Packing 2-dimensional bins in harmony. In: Proceedings of the 43rd Annual IEEE Symposium on Foundations of Computer Science, pp. 490–499 (2002)
– reference: Grandoni, F., Mömke, T., Wiese, A., Zhou, H.: A (5/3+ϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$5/3+\epsilon $$\end{document})-approximation for unsplittable flow on a path: placing small tasks into boxes. In: Proceedings of the 50th Annual ACM Symposium on Theory of Computing, pp. 607–619 (2018)
– reference: Hartline, J.R.K.: Incremental optimization. Ph.D. Thesis, Department of Computer Science, Cornell University (2008)
– reference: Ye, C.: On the trade-offs between modeling power and algorithmic complexity. Ph.D. Thesis, Columbia University (2016)
– reference: AnagnostopoulosAGrandoniFLeonardiSWieseAA mazing 2+ϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2+\epsilon $$\end{document} approximation for unsplittable flow on a pathACM Trans. Algorithms2018144123387432710.1145/32427691422.68278
– reference: BonsmaPSchulzJWieseAA constant-factor approximation algorithm for unsplittable flow on pathsSIAM J. Comput.2014432767799350468210.1137/1208683601297.68185
– reference: EpsteinLOn bin packing with clustering and bin packing with delaysDiscrete Optim.202141426954710.1016/j.disopt.2021.10064707411462
– reference: Batra, J., Garg, N., Kumar, A., Mömke, T., Wiese, A.: New approximation schemes for unsplittable flow on a path. In: Proceedings of the 26th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 47–58 (2015)
– reference: NutovZBeniaminyIYusterRA (1-1/e)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(1-1/e)$$\end{document}-approximation algorithm for the generalized assignment problemOper. Res. Lett.2006343283288220434110.1016/j.orl.2005.05.0061110.90065
– reference: Adjiashvili, D., Bosio, S., Weismantel, R., Zenklusen, R.: Time-expanded packings. In: Proceedings of the 41st International Colloquium on Automata, Languages and Programming, pp. 64–76 (2014)
– reference: NickelSSaldanha-da GamaFLaporteGNickelSSaldanha da GamaFMulti-period facility locationLocation Science2019BerlinSpringer30332610.1007/978-3-030-32177-2_1107554952
– reference: Della CroceFPferschyUScatamacchiaROn approximating the incremental knapsack problemDiscrete Appl. Math.20192642642396184910.1016/j.dam.2019.02.0161423.90218
– reference: BakerBSApproximation algorithms for NP-complete problems on planar graphsJ. ACM1994411153180136919710.1145/174644.1746500807.68067
– reference: FarahaniRZDreznerZAsgariNSingle facility location and relocation problem with time dependent weights and discrete planning horizonAnn. Oper. Res.2009167353368250649510.1007/s10479-008-0338-x1166.90011
– reference: Aouad, A., Segev, D.: An approximate dynamic programming approach to the incremental knapsack problem (2020). Oper. Res. (forthcoming)
– reference: Grandoni, F., Ingala, S., Uniyal, S.: Improved approximation algorithms for unsplittable flow on a path with time windows. In: Proceedings of the 13th International Workshop on Approximation and Online Algorithms, pp. 13–24 (2015)
– reference: Della CroceFPferschyUScatamacchiaRApproximating the 3-period incremental knapsack problemJ. Discrete Algorithms2018525569390790510.1016/j.jda.2018.11.0051416.90041
– reference: Faenza, Y., Malinovic, I.: A PTAS for the time-invariant incremental knapsack problem. In: Proceedings of the 5th International Symposium on Combinatorial Optimization, pp. 157–169 (2018)
– reference: FordLRFulkersonDRMaximal flow through a networkCan. J. Math.195683994047925110.4153/CJM-1956-045-50073.40203
– reference: ShmoysDBTardosÉAn approximation algorithm for the generalized assignment problemMath. Program.199362461474125188610.1007/BF015851780804.90077
– reference: Groß, M., Kappmeier, J.P.W., Schmidt, D.R., Schmidt, M.: Approximating earliest arrival flows in arbitrary networks. In: Proceedings of the 20th Annual European Symposium on Algorithms, pp. 551–562 (2012)
– reference: AkridaECCzyzowiczJGasieniecLKusznerLSpirakisPGTemporal flows in temporal networksJ. Comput. Syst. Sci.20191034660394423710.1016/j.jcss.2019.02.0031423.68324
– reference: Lin, M., Jaillet, P.: On the quickest flow problem in dynamic networks—a parametric min-cost flow approach. In: Proceedings of the 26th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1343–1356 (2015)
– reference: Bienstock, D., Sethuraman, J., Ye, C.: Approximation algorithms for the incremental knapsack problem via disjunctive programming (2013). arXiv:1311.4563
– reference: Ismaili, A.: Routing games over time with FIFO policy. In: Proceedings of the 13th Conference on Web and Internet Economics, pp. 266–280 (2017)
– reference: Sharp, A.M.: Incremental algorithms: solving problems in a changing world. Ph.D. Thesis, Department of Computer Science, Cornell University (2007)
– reference: BolandNKalinowskiTWatererHZhengLScheduling arc maintenance jobs in a network to maximize total flow over timeDiscrete Appl. Math.201416313452313330510.1016/j.dam.2012.05.0271297.90031
– reference: CalinescuGChakrabartiAKarloffHRabaniYAn improved approximation algorithm for resource allocationACM Trans. Algorithms20117417283698710.1145/2000807.20008161295.68209
– reference: CohenRKatzirLRazDAn efficient approximation for the generalized assignment problemInf. Process. Lett.20061004162166225677210.1016/j.ipl.2006.06.0031185.68853
– ident: 1755_CR4
– ident: 1755_CR34
– ident: 1755_CR13
  doi: 10.1007/978-3-662-44777-2_19
– ident: 1755_CR26
  doi: 10.1145/3188745.3188894
– ident: 1755_CR31
  doi: 10.1137/1.9781611973730.89
– ident: 1755_CR28
– start-page: 303
  volume-title: Location Science
  year: 2019
  ident: 1755_CR32
  doi: 10.1007/978-3-030-32177-2_11
– volume: 8
  start-page: 399
  year: 1956
  ident: 1755_CR23
  publication-title: Can. J. Math.
  doi: 10.4153/CJM-1956-045-5
– ident: 1755_CR25
  doi: 10.1007/978-3-319-28684-6_2
– ident: 1755_CR7
  doi: 10.1137/1.9781611973730.5
– volume: 36
  start-page: 416
  issue: 3
  year: 2011
  ident: 1755_CR22
  publication-title: Math. Oper. Res.
  doi: 10.1287/moor.1110.0499
– volume: 7
  start-page: 1
  issue: 4
  year: 2011
  ident: 1755_CR11
  publication-title: ACM Trans. Algorithms
  doi: 10.1145/2000807.2000816
– volume: 41
  start-page: 153
  issue: 1
  year: 1994
  ident: 1755_CR5
  publication-title: J. ACM
  doi: 10.1145/174644.174650
– ident: 1755_CR1
  doi: 10.1007/978-3-662-43948-7_6
– volume: 163
  start-page: 34
  issue: 1
  year: 2014
  ident: 1755_CR9
  publication-title: Discrete Appl. Math.
  doi: 10.1016/j.dam.2012.05.027
– volume: 167
  start-page: 353
  year: 2009
  ident: 1755_CR20
  publication-title: Ann. Oper. Res.
  doi: 10.1007/s10479-008-0338-x
– volume: 43
  start-page: 767
  issue: 2
  year: 2014
  ident: 1755_CR10
  publication-title: SIAM J. Comput.
  doi: 10.1137/120868360
– volume: 41
  year: 2021
  ident: 1755_CR18
  publication-title: Discrete Optim.
  doi: 10.1016/j.disopt.2021.100647
– ident: 1755_CR6
  doi: 10.1145/1132516.1132617
– volume: 32
  start-page: 130
  issue: 1
  year: 1985
  ident: 1755_CR29
  publication-title: J. ACM
  doi: 10.1145/2455.214106
– volume: 103
  start-page: 46
  year: 2019
  ident: 1755_CR2
  publication-title: J. Comput. Syst. Sci.
  doi: 10.1016/j.jcss.2019.02.003
– volume: 34
  start-page: 283
  issue: 3
  year: 2006
  ident: 1755_CR33
  publication-title: Oper. Res. Lett.
  doi: 10.1016/j.orl.2005.05.006
– start-page: 451
  volume-title: Research Trends in Combinatorial Optimization
  year: 2009
  ident: 1755_CR36
  doi: 10.1007/978-3-540-76796-1_21
– volume: 14
  start-page: 1
  issue: 4
  year: 2018
  ident: 1755_CR3
  publication-title: ACM Trans. Algorithms
  doi: 10.1145/3242769
– ident: 1755_CR37
– volume: 62
  start-page: 461
  year: 1993
  ident: 1755_CR35
  publication-title: Math. Program.
  doi: 10.1007/BF01585178
– ident: 1755_CR30
  doi: 10.1007/978-3-319-71924-5_19
– volume: 35
  start-page: 713
  issue: 3
  year: 2005
  ident: 1755_CR14
  publication-title: SIAM J. Comput.
  doi: 10.1137/S0097539700382820
– volume: 100
  start-page: 162
  issue: 4
  year: 2006
  ident: 1755_CR15
  publication-title: Inf. Process. Lett.
  doi: 10.1016/j.ipl.2006.06.003
– volume: 183
  start-page: 309
  year: 2020
  ident: 1755_CR24
  publication-title: Math. Program.
  doi: 10.1007/s10107-020-01504-2
– ident: 1755_CR27
  doi: 10.1007/978-3-642-33090-2_48
– ident: 1755_CR12
  doi: 10.1109/SFCS.2002.1181973
– volume: 52
  start-page: 55
  year: 2018
  ident: 1755_CR16
  publication-title: J. Discrete Algorithms
  doi: 10.1016/j.jda.2018.11.005
– volume: 6
  start-page: 247
  year: 2010
  ident: 1755_CR21
  publication-title: Theory Comput.
  doi: 10.4086/toc.2010.v006a011
– ident: 1755_CR19
  doi: 10.1007/978-3-319-96151-4_14
– ident: 1755_CR8
– volume: 264
  start-page: 26
  year: 2019
  ident: 1755_CR17
  publication-title: Discrete Appl. Math.
  doi: 10.1016/j.dam.2019.02.016
SSID ssj0001388
Score 2.4044862
Snippet We introduce and study a discrete multi-period extension of the classical knapsack problem, dubbed generalized incremental knapsack . In this setting, we are...
We introduce and study a discrete multi-period extension of the classical knapsack problem, dubbed generalized incremental knapsack. In this setting, we are...
SourceID gale
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 27
SubjectTerms Algorithms
Calculus of Variations and Optimal Control; Optimization
Combinatorics
Full Length Paper
Mathematical and Computational Physics
Mathematical Methods in Physics
Mathematics
Mathematics and Statistics
Mathematics of Computing
Numerical Analysis
Theoretical
Title Approximation algorithms for the generalized incremental knapsack problem
URI https://link.springer.com/article/10.1007/s10107-021-01755-7
Volume 198
WOSCitedRecordID wos000749079300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1436-4646
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001388
  issn: 0025-5610
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA86fdAHv8X5RR4EHzSQNm3TPg5x6IND_GJvJb0ks2x2Y50i_vUm_ZgbyEAfC9druOTu0lzu90PojEmXSxpJYlJvQjwWCCISDSTwTO7gjEsRyIJsgnc6Ybcb3VdNYXl9270uSRaReqbZzbHHaq79_eW-T_gyWjHpLrTu-PD4Mo2_DgvDmqjV7g6qVpnfdcylozooz5dEi0zT3vzfGLfQRrWzxK1yKWyjJZXtoPUZvEHzdDcFac130W3L4ol_pmXzIhaD3nCcTl7fcmw2stgI4l6JSZ1-KYnTDMqjRPONfiZGuYA-ruho9tBz-_rp6oZUzAoEGKMToiDgjlZSudSDKPKYm0Tgg4XOB185JkNxX0QaHO07ADKUgQIR-KBZQjWlmu2jRjbM1AHCXEOUeFQLnbheAlJ4jsvBqHOlEMCCJnJqA8dQwY5b9otB_AOYbI0WG6PFhdFi3kQX03dGJejGQulzO2-x9UijGUTVWGDGZ7Gt4ha3xdGQUdpEl_W0xZWr5gsUH_5N_AitWS768oLaMWpMxu_qBK3CxyTNx6fFGv0GtRrg7A
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB58gXrwLa7PHgQPWkibtmmPiyiKuogvvIV0kqxF7S7bVcRfb9LHqiCCHgvTaZgkM2lm5vsAdqn0mSSJdE3oTd2ARsIVqUY3CkzsYJRJEcmSbIJ1OvH9fXJZN4UVTbV7k5IsPfWXZjfPXqv59veXhaHLxmEyMBHLFvJdXd-N_K9H47gharWng7pV5mcd38JR45S_p0TLSHM8_78xLsBcfbJ02tVSWIQxlS_B7Be8QfN0MQJpLZbhtG3xxN-yqnnREU_d3iAbPjwXjjnIOkbQ6VaY1Nm7kk6WY3WVaL7xmIt-IfDRqeloVuD2-Ojm8MStmRVcpJQMXYUR87SSyicBJklA_TTBEC10PobKMxGKhSLR6OnQQ5SxjBSKKERNU6IJ0XQVJvJertbAYRqTNCBa6NQPUpQi8HyGRp0vhUAatcBrDMyxhh237BdP_BMw2RqNG6Px0mictWB_9E6_At34VXrPzhu3O9JoRlE3FpjxWWwr3mY2ORpTQlpw0Ewbr7dq8Yvi9b-J78D0yc3FOT8_7ZxtwIzlpa-K1TZhYjh4UVswha_DrBhsl-v1A0jo49A
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swED_atJTtYR_dRrNPPwz20JlIlm3Zj2FrWNgWCmtH34R8kjKT1AmxN8b--kn-SBMogdJHw_kkTh930ul-P4D3TAVckVT51vVmfshi6cvMoB-H1ndwxpWMVU02wSeT5OoqPd-o4q9fu3cpyaamwaE0FdVgqcxgo_CNuiu2wB2FeRT5fB8OQkca5M7rP36u92LKkqQjbXWRQls2c7uOLdfUbdDb6dHa64we37-_T-BRG3F6w2aKPIU9XRzDww0cQvv1fQ3eWj6D8dDhjP_Nm6JGT86ni1Ve_bouPRvgelbQmzZY1fk_rby8wOaK0bYxK-SylDjzWpqa53A5Orv49MVvGRd8ZIxUvsaYU6OVDkiIaRqyIEsxQgepj5Gm1nPxSKYGqYkookpUrFHGERqWEUOIYS-gVywKfQIeN5hmITHSZEGYoZIhDThadYGSElncB9oZW2ALR-5YMebiBkjZGU1Yo4naaIL34XT9z7IB49gp_cGNoXAr1WpG2RYc2P45zCsx5C5pmjBC-vCxG0LRLuFyh-KXdxN_B0fnn0fi23jy9RU8cHT1zRu219CrVr_1GzjEP1Vert7WU_c__QrstA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Approximation+algorithms+for+the+generalized+incremental+knapsack+problem&rft.jtitle=Mathematical+programming&rft.au=Faenza%2C+Yuri&rft.au=Segev%2C+Danny&rft.au=Zhang%2C+Lingyi&rft.date=2023-03-01&rft.issn=0025-5610&rft.eissn=1436-4646&rft.volume=198&rft.issue=1&rft.spage=27&rft.epage=83&rft_id=info:doi/10.1007%2Fs10107-021-01755-7&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10107_021_01755_7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0025-5610&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0025-5610&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0025-5610&client=summon