Approximation algorithms for the generalized incremental knapsack problem
We introduce and study a discrete multi-period extension of the classical knapsack problem, dubbed generalized incremental knapsack . In this setting, we are given a set of n items, each associated with a non-negative weight, and T time periods with non-decreasing capacities W 1 ≤ ⋯ ≤ W T . When ite...
Gespeichert in:
| Veröffentlicht in: | Mathematical programming Jg. 198; H. 1; S. 27 - 83 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.03.2023
Springer |
| Schlagworte: | |
| ISSN: | 0025-5610, 1436-4646 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | We introduce and study a discrete multi-period extension of the classical knapsack problem, dubbed
generalized incremental knapsack
. In this setting, we are given a set of
n
items, each associated with a non-negative weight, and
T
time periods with non-decreasing capacities
W
1
≤
⋯
≤
W
T
. When item
i
is inserted at time
t
, we gain a profit of
p
it
; however, this item remains in the knapsack for all subsequent periods. The goal is to decide if and when to insert each item, subject to the time-dependent capacity constraints, with the objective of maximizing our total profit. Interestingly, this setting subsumes as special cases a number of recently-studied incremental knapsack problems, all known to be strongly NP-hard. Our first contribution comes in the form of a polynomial-time
(
1
2
-
ϵ
)
-approximation for the generalized incremental knapsack problem. This result is based on a reformulation as a single-machine sequencing problem, which is addressed by blending dynamic programming techniques and the classical Shmoys–Tardos algorithm for the generalized assignment problem. Combined with further enumeration-based self-reinforcing ideas and new structural properties of nearly-optimal solutions, we turn our algorithm into a quasi-polynomial time approximation scheme (QPTAS). Hence, under widely believed complexity assumptions, this finding rules out the possibility that generalized incremental knapsack is APX-hard. |
|---|---|
| AbstractList | We introduce and study a discrete multi-period extension of the classical knapsack problem, dubbed generalized incremental knapsack. In this setting, we are given a set of n items, each associated with a non-negative weight, and T time periods with non-decreasing capacities [Formula omitted]. When item i is inserted at time t, we gain a profit of [Formula omitted]; however, this item remains in the knapsack for all subsequent periods. The goal is to decide if and when to insert each item, subject to the time-dependent capacity constraints, with the objective of maximizing our total profit. Interestingly, this setting subsumes as special cases a number of recently-studied incremental knapsack problems, all known to be strongly NP-hard. Our first contribution comes in the form of a polynomial-time [Formula omitted]-approximation for the generalized incremental knapsack problem. This result is based on a reformulation as a single-machine sequencing problem, which is addressed by blending dynamic programming techniques and the classical Shmoys-Tardos algorithm for the generalized assignment problem. Combined with further enumeration-based self-reinforcing ideas and new structural properties of nearly-optimal solutions, we turn our algorithm into a quasi-polynomial time approximation scheme (QPTAS). Hence, under widely believed complexity assumptions, this finding rules out the possibility that generalized incremental knapsack is APX-hard. We introduce and study a discrete multi-period extension of the classical knapsack problem, dubbed generalized incremental knapsack . In this setting, we are given a set of n items, each associated with a non-negative weight, and T time periods with non-decreasing capacities W 1 ≤ ⋯ ≤ W T . When item i is inserted at time t , we gain a profit of p it ; however, this item remains in the knapsack for all subsequent periods. The goal is to decide if and when to insert each item, subject to the time-dependent capacity constraints, with the objective of maximizing our total profit. Interestingly, this setting subsumes as special cases a number of recently-studied incremental knapsack problems, all known to be strongly NP-hard. Our first contribution comes in the form of a polynomial-time ( 1 2 - ϵ ) -approximation for the generalized incremental knapsack problem. This result is based on a reformulation as a single-machine sequencing problem, which is addressed by blending dynamic programming techniques and the classical Shmoys–Tardos algorithm for the generalized assignment problem. Combined with further enumeration-based self-reinforcing ideas and new structural properties of nearly-optimal solutions, we turn our algorithm into a quasi-polynomial time approximation scheme (QPTAS). Hence, under widely believed complexity assumptions, this finding rules out the possibility that generalized incremental knapsack is APX-hard. |
| Audience | Academic |
| Author | Faenza, Yuri Segev, Danny Zhang, Lingyi |
| Author_xml | – sequence: 1 givenname: Yuri orcidid: 0000-0002-3148-2159 surname: Faenza fullname: Faenza, Yuri organization: Department of Industrial Engineering and Operations Research, Columbia University – sequence: 2 givenname: Danny orcidid: 0000-0003-4684-2185 surname: Segev fullname: Segev, Danny email: segevdanny@tauex.tau.ac.il organization: Department of Statistics and Operations Research, School of Mathematical Sciences, Tel Aviv University – sequence: 3 givenname: Lingyi orcidid: 0000-0001-7562-4449 surname: Zhang fullname: Zhang, Lingyi organization: Department of Industrial Engineering and Operations Research, Columbia University |
| BookMark | eNp90M1KxDAQwPEgCq4fL-CpL9B10jRpe1zEL1jwoueQnU5qtE1LUkF9euPWk4clh0DIb2D-Z-zYj54Yu-Kw5gDVdeTAocqh4DnwSsq8OmIrXgqVl6pUx2wFUMhcKg6n7CzGNwDgoq5X7HEzTWH8dIOZ3egz03djcPPrEDM7hmx-pawjT8H07pvazHkMNJCfTZ-9ezNFg-9Z8ruehgt2Yk0f6fLvPmcvd7fPNw_59un-8WazzVEImHNCVXFLLRVQYtOUotg1KJHXqkZJvGmgkqaxyK3kiG3dKkKjJFqxAwtgxTlbL3M705N23o5zMJhOS4PDlMW69L6pRM1VLQASqBeAYYwxkNXo5v26Cbpec9C_DfXSUKeGet9QV4kW_-gUUqrwdRiJBcX02XcU9Nv4EXxqckj9AKj1h7I |
| CitedBy_id | crossref_primary_10_1111_poms_14040 crossref_primary_10_1007_s10107_023_02033_4 |
| Cites_doi | 10.1007/978-3-662-44777-2_19 10.1145/3188745.3188894 10.1137/1.9781611973730.89 10.1007/978-3-030-32177-2_11 10.4153/CJM-1956-045-5 10.1007/978-3-319-28684-6_2 10.1137/1.9781611973730.5 10.1287/moor.1110.0499 10.1145/2000807.2000816 10.1145/174644.174650 10.1007/978-3-662-43948-7_6 10.1016/j.dam.2012.05.027 10.1007/s10479-008-0338-x 10.1137/120868360 10.1016/j.disopt.2021.100647 10.1145/1132516.1132617 10.1145/2455.214106 10.1016/j.jcss.2019.02.003 10.1016/j.orl.2005.05.006 10.1007/978-3-540-76796-1_21 10.1145/3242769 10.1007/BF01585178 10.1007/978-3-319-71924-5_19 10.1137/S0097539700382820 10.1016/j.ipl.2006.06.003 10.1007/s10107-020-01504-2 10.1007/978-3-642-33090-2_48 10.1109/SFCS.2002.1181973 10.1016/j.jda.2018.11.005 10.4086/toc.2010.v006a011 10.1007/978-3-319-96151-4_14 10.1016/j.dam.2019.02.016 |
| ContentType | Journal Article |
| Copyright | Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2021 COPYRIGHT 2023 Springer |
| Copyright_xml | – notice: Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2021 – notice: COPYRIGHT 2023 Springer |
| DBID | AAYXX CITATION |
| DOI | 10.1007/s10107-021-01755-7 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Mathematics |
| EISSN | 1436-4646 |
| EndPage | 83 |
| ExternalDocumentID | A738168300 10_1007_s10107_021_01755_7 |
| GrantInformation_xml | – fundername: Office of Naval Research grantid: N00014-20-1-2091 funderid: http://dx.doi.org/10.13039/100000006 – fundername: Israel Science Foundation grantid: 148/16; 1407/20 |
| GroupedDBID | --K --Z -52 -5D -5G -BR -EM -Y2 -~C -~X .4S .86 .DC .VR 06D 0R~ 0VY 199 1B1 1N0 1OL 1SB 203 28- 29M 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 6TJ 78A 7WY 88I 8AO 8FE 8FG 8FL 8TC 8UJ 8VB 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACNCT ACOKC ACOMO ACPIV ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMOZ AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHQJS AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKVCP ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. B0M BA0 BAPOH BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EAD EAP EBA EBLON EBR EBS EBU ECS EDO EIOEI EJD EMI EMK EPL ESBYG EST ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ H~9 I-F I09 IAO IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K1G K60 K6V K6~ K7- KDC KOV KOW L6V LAS LLZTM M0C M0N M2P M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQ- NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9R PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 PTHSS Q2X QOK QOS QWB R4E R89 R9I RHV RIG RNI RNS ROL RPX RPZ RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TH9 TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WK8 XPP YLTOR Z45 Z5O Z7R Z7S Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8R Z8T Z8W Z92 ZL0 ZMTXR ZWQNP ~02 ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADXHL AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT PQGLB |
| ID | FETCH-LOGICAL-c330t-ec671fede204c99432b9c5c1868c5e199075a9fc1f51ccd8d6eca65cf3b0f00f3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 3 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000749079300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0025-5610 |
| IngestDate | Sat Nov 29 10:29:31 EST 2025 Sat Nov 29 03:34:03 EST 2025 Tue Nov 18 21:51:25 EST 2025 Fri Feb 21 02:45:40 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | 90C10 Approximation algorithms 68W25 Sequencing Incremental optimization 90B35 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c330t-ec671fede204c99432b9c5c1868c5e199075a9fc1f51ccd8d6eca65cf3b0f00f3 |
| ORCID | 0000-0003-4684-2185 0000-0001-7562-4449 0000-0002-3148-2159 |
| PageCount | 57 |
| ParticipantIDs | gale_infotracacademiconefile_A738168300 crossref_citationtrail_10_1007_s10107_021_01755_7 crossref_primary_10_1007_s10107_021_01755_7 springer_journals_10_1007_s10107_021_01755_7 |
| PublicationCentury | 2000 |
| PublicationDate | 20230300 2023-03-00 20230301 |
| PublicationDateYYYYMMDD | 2023-03-01 |
| PublicationDate_xml | – month: 3 year: 2023 text: 20230300 |
| PublicationDecade | 2020 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg |
| PublicationSubtitle | A Publication of the Mathematical Optimization Society |
| PublicationTitle | Mathematical programming |
| PublicationTitleAbbrev | Math. Program |
| PublicationYear | 2023 |
| Publisher | Springer Berlin Heidelberg Springer |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer |
| References | FordLRFulkersonDRMaximal flow through a networkCan. J. Math.195683994047925110.4153/CJM-1956-045-50073.40203 ChekuriCKhannaSA polynomial time approximation scheme for the multiple knapsack problemSIAM J. Comput.2005353713728220145510.1137/S00975397003828201095.68035 Groß, M., Kappmeier, J.P.W., Schmidt, D.R., Schmidt, M.: Approximating earliest arrival flows in arbitrary networks. In: Proceedings of the 20th Annual European Symposium on Algorithms, pp. 551–562 (2012) FarahaniRZDreznerZAsgariNSingle facility location and relocation problem with time dependent weights and discrete planning horizonAnn. Oper. Res.2009167353368250649510.1007/s10479-008-0338-x1166.90011 CalinescuGChakrabartiAKarloffHRabaniYAn improved approximation algorithm for resource allocationACM Trans. Algorithms20117417283698710.1145/2000807.20008161295.68209 NickelSSaldanha-da GamaFLaporteGNickelSSaldanha da GamaFMulti-period facility locationLocation Science2019BerlinSpringer30332610.1007/978-3-030-32177-2_1107554952 Bansal, N., Chakrabarti, A., Epstein, A., Schieber, B.: A quasi-PTAS for unsplittable flow on line graphs. In: Proceedings of the 38th ACM Symposium on Theory of Computing, pp. 721–729 (2006) Batra, J., Garg, N., Kumar, A., Mömke, T., Wiese, A.: New approximation schemes for unsplittable flow on a path. In: Proceedings of the 26th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 47–58 (2015) AnagnostopoulosAGrandoniFLeonardiSWieseAA mazing 2+ϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2+\epsilon $$\end{document} approximation for unsplittable flow on a pathACM Trans. Algorithms2018144123387432710.1145/32427691422.68278 EpsteinLOn bin packing with clustering and bin packing with delaysDiscrete Optim.202141426954710.1016/j.disopt.2021.10064707411462 BonsmaPSchulzJWieseAA constant-factor approximation algorithm for unsplittable flow on pathsSIAM J. Comput.2014432767799350468210.1137/1208683601297.68185 Grandoni, F., Ingala, S., Uniyal, S.: Improved approximation algorithms for unsplittable flow on a path with time windows. In: Proceedings of the 13th International Workshop on Approximation and Online Algorithms, pp. 13–24 (2015) Bienstock, D., Sethuraman, J., Ye, C.: Approximation algorithms for the incremental knapsack problem via disjunctive programming (2013). arXiv:1311.4563 Adjiashvili, D., Bosio, S., Weismantel, R., Zenklusen, R.: Time-expanded packings. In: Proceedings of the 41st International Colloquium on Automata, Languages and Programming, pp. 64–76 (2014) AkridaECCzyzowiczJGasieniecLKusznerLSpirakisPGTemporal flows in temporal networksJ. Comput. Syst. Sci.20191034660394423710.1016/j.jcss.2019.02.0031423.68324 CohenRKatzirLRazDAn efficient approximation for the generalized assignment problemInf. Process. Lett.20061004162166225677210.1016/j.ipl.2006.06.0031185.68853 Lin, M., Jaillet, P.: On the quickest flow problem in dynamic networks—a parametric min-cost flow approach. In: Proceedings of the 26th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1343–1356 (2015) Della CroceFPferschyUScatamacchiaRApproximating the 3-period incremental knapsack problemJ. Discrete Algorithms2018525569390790510.1016/j.jda.2018.11.0051416.90041 FleischerLGoemansMXMirrokniVSSviridenkoMTight approximation algorithms for maximum separable assignment problemsMath. Oper. Res.2011363416431283239910.1287/moor.1110.04991238.68187 Ye, C.: On the trade-offs between modeling power and algorithmic complexity. Ph.D. Thesis, Columbia University (2016) HochbaumDSMaassWApproximation schemes for covering and packing problems in image processing and VLSIJ. ACM198532113013683233510.1145/2455.2141060633.68027 GrafLHarksTSeringLDynamic flows with adaptive route choiceMath. Program.2020183309335413782210.1007/s10107-020-01504-21448.90024 BolandNKalinowskiTWatererHZhengLScheduling arc maintenance jobs in a network to maximize total flow over timeDiscrete Appl. Math.201416313452313330510.1016/j.dam.2012.05.0271297.90031 Faenza, Y., Malinovic, I.: A PTAS for the time-invariant incremental knapsack problem. In: Proceedings of the 5th International Symposium on Combinatorial Optimization, pp. 157–169 (2018) Aouad, A., Segev, D.: An approximate dynamic programming approach to the incremental knapsack problem (2020). Oper. Res. (forthcoming) Della CroceFPferschyUScatamacchiaROn approximating the incremental knapsack problemDiscrete Appl. Math.20192642642396184910.1016/j.dam.2019.02.0161423.90218 ShmoysDBTardosÉAn approximation algorithm for the generalized assignment problemMath. Program.199362461474125188610.1007/BF015851780804.90077 Sharp, A.M.: Incremental algorithms: solving problems in a changing world. Ph.D. Thesis, Department of Computer Science, Cornell University (2007) BakerBSApproximation algorithms for NP-complete problems on planar graphsJ. ACM1994411153180136919710.1145/174644.1746500807.68067 Chakaravarthy, V.T., Choudhury, A.R., Gupta, S., Roy, S., Sabharwal, Y.: Improved algorithms for resource allocation under varying capacity. In: Proceedings for the 22nd Annual European Symposium on Algorithms, pp. 222–234 (2014) Ismaili, A.: Routing games over time with FIFO policy. In: Proceedings of the 13th Conference on Web and Internet Economics, pp. 266–280 (2017) Grandoni, F., Mömke, T., Wiese, A., Zhou, H.: A (5/3+ϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$5/3+\epsilon $$\end{document})-approximation for unsplittable flow on a path: placing small tasks into boxes. In: Proceedings of the 50th Annual ACM Symposium on Theory of Computing, pp. 607–619 (2018) Caprara, A.: Packing 2-dimensional bins in harmony. In: Proceedings of the 43rd Annual IEEE Symposium on Foundations of Computer Science, pp. 490–499 (2002) NutovZBeniaminyIYusterRA (1-1/e)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(1-1/e)$$\end{document}-approximation algorithm for the generalized assignment problemOper. Res. Lett.2006343283288220434110.1016/j.orl.2005.05.0061110.90065 FeigeUVondrákJThe submodular welfare problem with demand queriesTheory Comput.20106247290277007810.4086/toc.2010.v006a0111213.68703 SkutellaMCookWLovászLVygenJAn introduction to network flows over timeResearch Trends in Combinatorial Optimization2009BerlinSpringer45148210.1007/978-3-540-76796-1_21 Hartline, J.R.K.: Incremental optimization. Ph.D. Thesis, Department of Computer Science, Cornell University (2008) 1755_CR37 1755_CR13 F Della Croce (1755_CR17) 2019; 264 1755_CR12 Z Nutov (1755_CR33) 2006; 34 1755_CR34 RZ Farahani (1755_CR20) 2009; 167 1755_CR31 C Chekuri (1755_CR14) 2005; 35 DS Hochbaum (1755_CR29) 1985; 32 1755_CR30 L Fleischer (1755_CR22) 2011; 36 P Bonsma (1755_CR10) 2014; 43 EC Akrida (1755_CR2) 2019; 103 N Boland (1755_CR9) 2014; 163 F Della Croce (1755_CR16) 2018; 52 1755_CR19 LR Ford (1755_CR23) 1956; 8 1755_CR28 M Skutella (1755_CR36) 2009 1755_CR27 1755_CR26 1755_CR25 R Cohen (1755_CR15) 2006; 100 DB Shmoys (1755_CR35) 1993; 62 1755_CR8 L Graf (1755_CR24) 2020; 183 G Calinescu (1755_CR11) 2011; 7 1755_CR1 U Feige (1755_CR21) 2010; 6 1755_CR4 1755_CR6 L Epstein (1755_CR18) 2021; 41 1755_CR7 A Anagnostopoulos (1755_CR3) 2018; 14 S Nickel (1755_CR32) 2019 BS Baker (1755_CR5) 1994; 41 |
| References_xml | – reference: Chakaravarthy, V.T., Choudhury, A.R., Gupta, S., Roy, S., Sabharwal, Y.: Improved algorithms for resource allocation under varying capacity. In: Proceedings for the 22nd Annual European Symposium on Algorithms, pp. 222–234 (2014) – reference: HochbaumDSMaassWApproximation schemes for covering and packing problems in image processing and VLSIJ. ACM198532113013683233510.1145/2455.2141060633.68027 – reference: FleischerLGoemansMXMirrokniVSSviridenkoMTight approximation algorithms for maximum separable assignment problemsMath. Oper. Res.2011363416431283239910.1287/moor.1110.04991238.68187 – reference: ChekuriCKhannaSA polynomial time approximation scheme for the multiple knapsack problemSIAM J. Comput.2005353713728220145510.1137/S00975397003828201095.68035 – reference: Bansal, N., Chakrabarti, A., Epstein, A., Schieber, B.: A quasi-PTAS for unsplittable flow on line graphs. In: Proceedings of the 38th ACM Symposium on Theory of Computing, pp. 721–729 (2006) – reference: SkutellaMCookWLovászLVygenJAn introduction to network flows over timeResearch Trends in Combinatorial Optimization2009BerlinSpringer45148210.1007/978-3-540-76796-1_21 – reference: GrafLHarksTSeringLDynamic flows with adaptive route choiceMath. Program.2020183309335413782210.1007/s10107-020-01504-21448.90024 – reference: FeigeUVondrákJThe submodular welfare problem with demand queriesTheory Comput.20106247290277007810.4086/toc.2010.v006a0111213.68703 – reference: Caprara, A.: Packing 2-dimensional bins in harmony. In: Proceedings of the 43rd Annual IEEE Symposium on Foundations of Computer Science, pp. 490–499 (2002) – reference: Grandoni, F., Mömke, T., Wiese, A., Zhou, H.: A (5/3+ϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$5/3+\epsilon $$\end{document})-approximation for unsplittable flow on a path: placing small tasks into boxes. In: Proceedings of the 50th Annual ACM Symposium on Theory of Computing, pp. 607–619 (2018) – reference: Hartline, J.R.K.: Incremental optimization. Ph.D. Thesis, Department of Computer Science, Cornell University (2008) – reference: Ye, C.: On the trade-offs between modeling power and algorithmic complexity. Ph.D. Thesis, Columbia University (2016) – reference: AnagnostopoulosAGrandoniFLeonardiSWieseAA mazing 2+ϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2+\epsilon $$\end{document} approximation for unsplittable flow on a pathACM Trans. Algorithms2018144123387432710.1145/32427691422.68278 – reference: BonsmaPSchulzJWieseAA constant-factor approximation algorithm for unsplittable flow on pathsSIAM J. Comput.2014432767799350468210.1137/1208683601297.68185 – reference: EpsteinLOn bin packing with clustering and bin packing with delaysDiscrete Optim.202141426954710.1016/j.disopt.2021.10064707411462 – reference: Batra, J., Garg, N., Kumar, A., Mömke, T., Wiese, A.: New approximation schemes for unsplittable flow on a path. In: Proceedings of the 26th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 47–58 (2015) – reference: NutovZBeniaminyIYusterRA (1-1/e)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(1-1/e)$$\end{document}-approximation algorithm for the generalized assignment problemOper. Res. Lett.2006343283288220434110.1016/j.orl.2005.05.0061110.90065 – reference: Adjiashvili, D., Bosio, S., Weismantel, R., Zenklusen, R.: Time-expanded packings. In: Proceedings of the 41st International Colloquium on Automata, Languages and Programming, pp. 64–76 (2014) – reference: NickelSSaldanha-da GamaFLaporteGNickelSSaldanha da GamaFMulti-period facility locationLocation Science2019BerlinSpringer30332610.1007/978-3-030-32177-2_1107554952 – reference: Della CroceFPferschyUScatamacchiaROn approximating the incremental knapsack problemDiscrete Appl. Math.20192642642396184910.1016/j.dam.2019.02.0161423.90218 – reference: BakerBSApproximation algorithms for NP-complete problems on planar graphsJ. ACM1994411153180136919710.1145/174644.1746500807.68067 – reference: FarahaniRZDreznerZAsgariNSingle facility location and relocation problem with time dependent weights and discrete planning horizonAnn. Oper. Res.2009167353368250649510.1007/s10479-008-0338-x1166.90011 – reference: Aouad, A., Segev, D.: An approximate dynamic programming approach to the incremental knapsack problem (2020). Oper. Res. (forthcoming) – reference: Grandoni, F., Ingala, S., Uniyal, S.: Improved approximation algorithms for unsplittable flow on a path with time windows. In: Proceedings of the 13th International Workshop on Approximation and Online Algorithms, pp. 13–24 (2015) – reference: Della CroceFPferschyUScatamacchiaRApproximating the 3-period incremental knapsack problemJ. Discrete Algorithms2018525569390790510.1016/j.jda.2018.11.0051416.90041 – reference: Faenza, Y., Malinovic, I.: A PTAS for the time-invariant incremental knapsack problem. In: Proceedings of the 5th International Symposium on Combinatorial Optimization, pp. 157–169 (2018) – reference: FordLRFulkersonDRMaximal flow through a networkCan. J. Math.195683994047925110.4153/CJM-1956-045-50073.40203 – reference: ShmoysDBTardosÉAn approximation algorithm for the generalized assignment problemMath. Program.199362461474125188610.1007/BF015851780804.90077 – reference: Groß, M., Kappmeier, J.P.W., Schmidt, D.R., Schmidt, M.: Approximating earliest arrival flows in arbitrary networks. In: Proceedings of the 20th Annual European Symposium on Algorithms, pp. 551–562 (2012) – reference: AkridaECCzyzowiczJGasieniecLKusznerLSpirakisPGTemporal flows in temporal networksJ. Comput. Syst. Sci.20191034660394423710.1016/j.jcss.2019.02.0031423.68324 – reference: Lin, M., Jaillet, P.: On the quickest flow problem in dynamic networks—a parametric min-cost flow approach. In: Proceedings of the 26th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1343–1356 (2015) – reference: Bienstock, D., Sethuraman, J., Ye, C.: Approximation algorithms for the incremental knapsack problem via disjunctive programming (2013). arXiv:1311.4563 – reference: Ismaili, A.: Routing games over time with FIFO policy. In: Proceedings of the 13th Conference on Web and Internet Economics, pp. 266–280 (2017) – reference: Sharp, A.M.: Incremental algorithms: solving problems in a changing world. Ph.D. Thesis, Department of Computer Science, Cornell University (2007) – reference: BolandNKalinowskiTWatererHZhengLScheduling arc maintenance jobs in a network to maximize total flow over timeDiscrete Appl. Math.201416313452313330510.1016/j.dam.2012.05.0271297.90031 – reference: CalinescuGChakrabartiAKarloffHRabaniYAn improved approximation algorithm for resource allocationACM Trans. Algorithms20117417283698710.1145/2000807.20008161295.68209 – reference: CohenRKatzirLRazDAn efficient approximation for the generalized assignment problemInf. Process. Lett.20061004162166225677210.1016/j.ipl.2006.06.0031185.68853 – ident: 1755_CR4 – ident: 1755_CR34 – ident: 1755_CR13 doi: 10.1007/978-3-662-44777-2_19 – ident: 1755_CR26 doi: 10.1145/3188745.3188894 – ident: 1755_CR31 doi: 10.1137/1.9781611973730.89 – ident: 1755_CR28 – start-page: 303 volume-title: Location Science year: 2019 ident: 1755_CR32 doi: 10.1007/978-3-030-32177-2_11 – volume: 8 start-page: 399 year: 1956 ident: 1755_CR23 publication-title: Can. J. Math. doi: 10.4153/CJM-1956-045-5 – ident: 1755_CR25 doi: 10.1007/978-3-319-28684-6_2 – ident: 1755_CR7 doi: 10.1137/1.9781611973730.5 – volume: 36 start-page: 416 issue: 3 year: 2011 ident: 1755_CR22 publication-title: Math. Oper. Res. doi: 10.1287/moor.1110.0499 – volume: 7 start-page: 1 issue: 4 year: 2011 ident: 1755_CR11 publication-title: ACM Trans. Algorithms doi: 10.1145/2000807.2000816 – volume: 41 start-page: 153 issue: 1 year: 1994 ident: 1755_CR5 publication-title: J. ACM doi: 10.1145/174644.174650 – ident: 1755_CR1 doi: 10.1007/978-3-662-43948-7_6 – volume: 163 start-page: 34 issue: 1 year: 2014 ident: 1755_CR9 publication-title: Discrete Appl. Math. doi: 10.1016/j.dam.2012.05.027 – volume: 167 start-page: 353 year: 2009 ident: 1755_CR20 publication-title: Ann. Oper. Res. doi: 10.1007/s10479-008-0338-x – volume: 43 start-page: 767 issue: 2 year: 2014 ident: 1755_CR10 publication-title: SIAM J. Comput. doi: 10.1137/120868360 – volume: 41 year: 2021 ident: 1755_CR18 publication-title: Discrete Optim. doi: 10.1016/j.disopt.2021.100647 – ident: 1755_CR6 doi: 10.1145/1132516.1132617 – volume: 32 start-page: 130 issue: 1 year: 1985 ident: 1755_CR29 publication-title: J. ACM doi: 10.1145/2455.214106 – volume: 103 start-page: 46 year: 2019 ident: 1755_CR2 publication-title: J. Comput. Syst. Sci. doi: 10.1016/j.jcss.2019.02.003 – volume: 34 start-page: 283 issue: 3 year: 2006 ident: 1755_CR33 publication-title: Oper. Res. Lett. doi: 10.1016/j.orl.2005.05.006 – start-page: 451 volume-title: Research Trends in Combinatorial Optimization year: 2009 ident: 1755_CR36 doi: 10.1007/978-3-540-76796-1_21 – volume: 14 start-page: 1 issue: 4 year: 2018 ident: 1755_CR3 publication-title: ACM Trans. Algorithms doi: 10.1145/3242769 – ident: 1755_CR37 – volume: 62 start-page: 461 year: 1993 ident: 1755_CR35 publication-title: Math. Program. doi: 10.1007/BF01585178 – ident: 1755_CR30 doi: 10.1007/978-3-319-71924-5_19 – volume: 35 start-page: 713 issue: 3 year: 2005 ident: 1755_CR14 publication-title: SIAM J. Comput. doi: 10.1137/S0097539700382820 – volume: 100 start-page: 162 issue: 4 year: 2006 ident: 1755_CR15 publication-title: Inf. Process. Lett. doi: 10.1016/j.ipl.2006.06.003 – volume: 183 start-page: 309 year: 2020 ident: 1755_CR24 publication-title: Math. Program. doi: 10.1007/s10107-020-01504-2 – ident: 1755_CR27 doi: 10.1007/978-3-642-33090-2_48 – ident: 1755_CR12 doi: 10.1109/SFCS.2002.1181973 – volume: 52 start-page: 55 year: 2018 ident: 1755_CR16 publication-title: J. Discrete Algorithms doi: 10.1016/j.jda.2018.11.005 – volume: 6 start-page: 247 year: 2010 ident: 1755_CR21 publication-title: Theory Comput. doi: 10.4086/toc.2010.v006a011 – ident: 1755_CR19 doi: 10.1007/978-3-319-96151-4_14 – ident: 1755_CR8 – volume: 264 start-page: 26 year: 2019 ident: 1755_CR17 publication-title: Discrete Appl. Math. doi: 10.1016/j.dam.2019.02.016 |
| SSID | ssj0001388 |
| Score | 2.4044862 |
| Snippet | We introduce and study a discrete multi-period extension of the classical knapsack problem, dubbed
generalized incremental knapsack
. In this setting, we are... We introduce and study a discrete multi-period extension of the classical knapsack problem, dubbed generalized incremental knapsack. In this setting, we are... |
| SourceID | gale crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 27 |
| SubjectTerms | Algorithms Calculus of Variations and Optimal Control; Optimization Combinatorics Full Length Paper Mathematical and Computational Physics Mathematical Methods in Physics Mathematics Mathematics and Statistics Mathematics of Computing Numerical Analysis Theoretical |
| Title | Approximation algorithms for the generalized incremental knapsack problem |
| URI | https://link.springer.com/article/10.1007/s10107-021-01755-7 |
| Volume | 198 |
| WOSCitedRecordID | wos000749079300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1436-4646 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001388 issn: 0025-5610 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA86fdAHv8X5RR4EHzSQNm3TPg5x6IND_GJvJb0ks2x2Y50i_vUm_ZgbyEAfC9druOTu0lzu90PojEmXSxpJYlJvQjwWCCISDSTwTO7gjEsRyIJsgnc6Ybcb3VdNYXl9270uSRaReqbZzbHHaq79_eW-T_gyWjHpLrTu-PD4Mo2_DgvDmqjV7g6qVpnfdcylozooz5dEi0zT3vzfGLfQRrWzxK1yKWyjJZXtoPUZvEHzdDcFac130W3L4ol_pmXzIhaD3nCcTl7fcmw2stgI4l6JSZ1-KYnTDMqjRPONfiZGuYA-ruho9tBz-_rp6oZUzAoEGKMToiDgjlZSudSDKPKYm0Tgg4XOB185JkNxX0QaHO07ADKUgQIR-KBZQjWlmu2jRjbM1AHCXEOUeFQLnbheAlJ4jsvBqHOlEMCCJnJqA8dQwY5b9otB_AOYbI0WG6PFhdFi3kQX03dGJejGQulzO2-x9UijGUTVWGDGZ7Gt4ha3xdGQUdpEl_W0xZWr5gsUH_5N_AitWS768oLaMWpMxu_qBK3CxyTNx6fFGv0GtRrg7A |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB58gXrwLa7PHgQPWkibtmmPiyiKuogvvIV0kqxF7S7bVcRfb9LHqiCCHgvTaZgkM2lm5vsAdqn0mSSJdE3oTd2ARsIVqUY3CkzsYJRJEcmSbIJ1OvH9fXJZN4UVTbV7k5IsPfWXZjfPXqv59veXhaHLxmEyMBHLFvJdXd-N_K9H47gharWng7pV5mcd38JR45S_p0TLSHM8_78xLsBcfbJ02tVSWIQxlS_B7Be8QfN0MQJpLZbhtG3xxN-yqnnREU_d3iAbPjwXjjnIOkbQ6VaY1Nm7kk6WY3WVaL7xmIt-IfDRqeloVuD2-Ojm8MStmRVcpJQMXYUR87SSyicBJklA_TTBEC10PobKMxGKhSLR6OnQQ5SxjBSKKERNU6IJ0XQVJvJertbAYRqTNCBa6NQPUpQi8HyGRp0vhUAatcBrDMyxhh237BdP_BMw2RqNG6Px0mictWB_9E6_At34VXrPzhu3O9JoRlE3FpjxWWwr3mY2ORpTQlpw0Ewbr7dq8Yvi9b-J78D0yc3FOT8_7ZxtwIzlpa-K1TZhYjh4UVswha_DrBhsl-v1A0jo49A |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swED_atJTtYR_dRrNPPwz20JlIlm3Zj2FrWNgWCmtH34R8kjKT1AmxN8b--kn-SBMogdJHw_kkTh930ul-P4D3TAVckVT51vVmfshi6cvMoB-H1ndwxpWMVU02wSeT5OoqPd-o4q9fu3cpyaamwaE0FdVgqcxgo_CNuiu2wB2FeRT5fB8OQkca5M7rP36u92LKkqQjbXWRQls2c7uOLdfUbdDb6dHa64we37-_T-BRG3F6w2aKPIU9XRzDww0cQvv1fQ3eWj6D8dDhjP_Nm6JGT86ni1Ve_bouPRvgelbQmzZY1fk_rby8wOaK0bYxK-SylDjzWpqa53A5Orv49MVvGRd8ZIxUvsaYU6OVDkiIaRqyIEsxQgepj5Gm1nPxSKYGqYkookpUrFHGERqWEUOIYS-gVywKfQIeN5hmITHSZEGYoZIhDThadYGSElncB9oZW2ALR-5YMebiBkjZGU1Yo4naaIL34XT9z7IB49gp_cGNoXAr1WpG2RYc2P45zCsx5C5pmjBC-vCxG0LRLuFyh-KXdxN_B0fnn0fi23jy9RU8cHT1zRu219CrVr_1GzjEP1Vert7WU_c__QrstA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Approximation+algorithms+for+the+generalized+incremental+knapsack+problem&rft.jtitle=Mathematical+programming&rft.au=Faenza%2C+Yuri&rft.au=Segev%2C+Danny&rft.au=Zhang%2C+Lingyi&rft.date=2023-03-01&rft.issn=0025-5610&rft.eissn=1436-4646&rft.volume=198&rft.issue=1&rft.spage=27&rft.epage=83&rft_id=info:doi/10.1007%2Fs10107-021-01755-7&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10107_021_01755_7 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0025-5610&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0025-5610&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0025-5610&client=summon |