Some new structure-preserving algorithms for general multi-symplectic formulations of Hamiltonian PDEs

Many partial differential equations (PDEs) can be written as a multi-symplectic Hamiltonian system, which has three local conservation laws, namely multi-symplectic conservation law, local energy conservation law and local momentum conservation law. In this paper, we give several systematic methods...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational physics Jg. 279; S. 80 - 102
Hauptverfasser: Gong, Yuezheng, Cai, Jiaxiang, Wang, Yushun
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Inc 15.12.2014
Schlagworte:
ISSN:0021-9991, 1090-2716
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Many partial differential equations (PDEs) can be written as a multi-symplectic Hamiltonian system, which has three local conservation laws, namely multi-symplectic conservation law, local energy conservation law and local momentum conservation law. In this paper, we give several systematic methods for discretizing general multi-symplectic formulations of Hamiltonian PDEs, including a local energy-preserving algorithm, a class of global energy-preserving methods and a local momentum-preserving algorithm. The methods are illustrated by the nonlinear Schrödinger equation and the Korteweg–de Vries equation. Numerical experiments are presented to demonstrate the conservative properties of the proposed numerical methods.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0021-9991
1090-2716
DOI:10.1016/j.jcp.2014.09.001