Some new structure-preserving algorithms for general multi-symplectic formulations of Hamiltonian PDEs
Many partial differential equations (PDEs) can be written as a multi-symplectic Hamiltonian system, which has three local conservation laws, namely multi-symplectic conservation law, local energy conservation law and local momentum conservation law. In this paper, we give several systematic methods...
Uložené v:
| Vydané v: | Journal of computational physics Ročník 279; s. 80 - 102 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier Inc
15.12.2014
|
| Predmet: | |
| ISSN: | 0021-9991, 1090-2716 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | Many partial differential equations (PDEs) can be written as a multi-symplectic Hamiltonian system, which has three local conservation laws, namely multi-symplectic conservation law, local energy conservation law and local momentum conservation law. In this paper, we give several systematic methods for discretizing general multi-symplectic formulations of Hamiltonian PDEs, including a local energy-preserving algorithm, a class of global energy-preserving methods and a local momentum-preserving algorithm. The methods are illustrated by the nonlinear Schrödinger equation and the Korteweg–de Vries equation. Numerical experiments are presented to demonstrate the conservative properties of the proposed numerical methods. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ISSN: | 0021-9991 1090-2716 |
| DOI: | 10.1016/j.jcp.2014.09.001 |