Randomized algorithms for the computation of multilinear rank-(μ1,μ2,μ3) approximations

We present some randomized algorithms for computing multilinear rank- ( μ 1 , μ 2 , μ 3 ) approximations of tensors by combining the sparse subspace embedding and the singular value decomposition. The error bound for this algorithm with the high probability is obtained by the properties of sparse su...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of global optimization Ročník 87; číslo 2-4; s. 373 - 403
Hlavní autoři: Che, Maolin, Wei, Yimin, Xu, Yanwei
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.11.2023
Springer
Témata:
ISSN:0925-5001, 1573-2916
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We present some randomized algorithms for computing multilinear rank- ( μ 1 , μ 2 , μ 3 ) approximations of tensors by combining the sparse subspace embedding and the singular value decomposition. The error bound for this algorithm with the high probability is obtained by the properties of sparse subspace embedding. Furthermore, combining the power scheme and the proposed randomized algorithm, we derive a three-stage randomized algorithm and make a probabilistic analysis for its error bound. The efficiency of the proposed algorithms is illustrated via numerical examples.
ISSN:0925-5001
1573-2916
DOI:10.1007/s10898-022-01182-8