RamanCMP: A Raman spectral classification acceleration method based on lightweight model and model compression techniques

In recent years, Raman spectroscopy combined with deep learning techniques has been widely used in various fields such as medical, chemical, and geological. However, there is still room for optimization of deep learning techniques and model compression algorithms for processing Raman spectral data....

Full description

Saved in:
Bibliographic Details
Published in:Analytica chimica acta Vol. 1278; p. 341758
Main Authors: Gong, Zengyun, Chen, Chen, Chen, Cheng, Li, Chenxi, Tian, Xuecong, Gong, Zhongcheng, Lv, Xiaoyi
Format: Journal Article
Language:English
Published: Elsevier B.V 16.10.2023
Subjects:
ISSN:0003-2670, 1873-4324, 1873-4324
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In recent years, Raman spectroscopy combined with deep learning techniques has been widely used in various fields such as medical, chemical, and geological. However, there is still room for optimization of deep learning techniques and model compression algorithms for processing Raman spectral data. To further optimize deep learning models applied to Raman spectroscopy, in this study time, accuracy, sensitivity, specificity and floating point operations numbers(FLOPs) are used as evaluation metrics to optimize the model, which is named RamanCompact(RamanCMP). The experimental data used in this research are selected from the RRUFF public dataset, which consists of 723 Raman spectroscopy data samples from 10 different mineral categories. In this paper, 1D-EfficientNet adapted to the spectral data as well as 1D-DRSN are proposed to improve the model classification accuracy. To achieve better classification accuracy while optimizing the time parameters, three model compression methods are designed: knowledge distillation using 1D-EfficientNet model as a teacher model to train convolutional neural networks(CNN), proposing a channel conversion method to optimize 1D-DRSN model, and using 1D-DRSN model as a feature extractor in combination with linear discriminant analysis(LDA) model for classification. Compared with the traditional LDA and CNN models, the accuracy of 1D-EfficientNet and 1D-DRSN is improved by more than 20%. The time of the distilled model is reduced by 9680.9s compared with the teacher model 1D-EfficientNet under the condition of losing 2.07% accuracy. The accuracy of the distilled model is improved by 20% compared to the CNN student model while keeping inference efficiency constant. The 1D-DRSN optimized with channel conversion method saves 60% inference time of the original 1D-DRSN model. Feature extraction reduces the inference time of 1D-DRSN model by 93% with 94.48% accuracy. This study innovatively combines lightweight models and model compression algorithms to improve the classification speed of deep learning models in the field of Raman spectroscopy, forming a complete set of analysis methods and laying the foundation for future research. [Display omitted] •Proposed RamanCMP, a Raman spectral classification acceleration method.•Proposed 1D-EfficientNet and 1D-DRSN for spectral data.•Proposed channel conversion method and 1D-DRSN feature extractor.•Testing RamanCMP using the RRUFF public dataset and the external validation dataset for Sjögren's syndrome.
AbstractList In recent years, Raman spectroscopy combined with deep learning techniques has been widely used in various fields such as medical, chemical, and geological. However, there is still room for optimization of deep learning techniques and model compression algorithms for processing Raman spectral data. To further optimize deep learning models applied to Raman spectroscopy, in this study time, accuracy, sensitivity, specificity and floating point operations numbers(FLOPs) are used as evaluation metrics to optimize the model, which is named RamanCompact(RamanCMP). The experimental data used in this research are selected from the RRUFF public dataset, which consists of 723 Raman spectroscopy data samples from 10 different mineral categories. In this paper, 1D-EfficientNet adapted to the spectral data as well as 1D-DRSN are proposed to improve the model classification accuracy. To achieve better classification accuracy while optimizing the time parameters, three model compression methods are designed: knowledge distillation using 1D-EfficientNet model as a teacher model to train convolutional neural networks(CNN), proposing a channel conversion method to optimize 1D-DRSN model, and using 1D-DRSN model as a feature extractor in combination with linear discriminant analysis(LDA) model for classification. Compared with the traditional LDA and CNN models, the accuracy of 1D-EfficientNet and 1D-DRSN is improved by more than 20%. The time of the distilled model is reduced by 9680.9s compared with the teacher model 1D-EfficientNet under the condition of losing 2.07% accuracy. The accuracy of the distilled model is improved by 20% compared to the CNN student model while keeping inference efficiency constant. The 1D-DRSN optimized with channel conversion method saves 60% inference time of the original 1D-DRSN model. Feature extraction reduces the inference time of 1D-DRSN model by 93% with 94.48% accuracy. This study innovatively combines lightweight models and model compression algorithms to improve the classification speed of deep learning models in the field of Raman spectroscopy, forming a complete set of analysis methods and laying the foundation for future research. [Display omitted] •Proposed RamanCMP, a Raman spectral classification acceleration method.•Proposed 1D-EfficientNet and 1D-DRSN for spectral data.•Proposed channel conversion method and 1D-DRSN feature extractor.•Testing RamanCMP using the RRUFF public dataset and the external validation dataset for Sjögren's syndrome.
In recent years, Raman spectroscopy combined with deep learning techniques has been widely used in various fields such as medical, chemical, and geological. However, there is still room for optimization of deep learning techniques and model compression algorithms for processing Raman spectral data. To further optimize deep learning models applied to Raman spectroscopy, in this study time, accuracy, sensitivity, specificity and floating point operations numbers(FLOPs) are used as evaluation metrics to optimize the model, which is named RamanCompact(RamanCMP). The experimental data used in this research are selected from the RRUFF public dataset, which consists of 723 Raman spectroscopy data samples from 10 different mineral categories. In this paper, 1D-EfficientNet adapted to the spectral data as well as 1D-DRSN are proposed to improve the model classification accuracy. To achieve better classification accuracy while optimizing the time parameters, three model compression methods are designed: knowledge distillation using 1D-EfficientNet model as a teacher model to train convolutional neural networks(CNN), proposing a channel conversion method to optimize 1D-DRSN model, and using 1D-DRSN model as a feature extractor in combination with linear discriminant analysis(LDA) model for classification. Compared with the traditional LDA and CNN models, the accuracy of 1D-EfficientNet and 1D-DRSN is improved by more than 20%. The time of the distilled model is reduced by 9680.9s compared with the teacher model 1D-EfficientNet under the condition of losing 2.07% accuracy. The accuracy of the distilled model is improved by 20% compared to the CNN student model while keeping inference efficiency constant. The 1D-DRSN optimized with channel conversion method saves 60% inference time of the original 1D-DRSN model. Feature extraction reduces the inference time of 1D-DRSN model by 93% with 94.48% accuracy. This study innovatively combines lightweight models and model compression algorithms to improve the classification speed of deep learning models in the field of Raman spectroscopy, forming a complete set of analysis methods and laying the foundation for future research.In recent years, Raman spectroscopy combined with deep learning techniques has been widely used in various fields such as medical, chemical, and geological. However, there is still room for optimization of deep learning techniques and model compression algorithms for processing Raman spectral data. To further optimize deep learning models applied to Raman spectroscopy, in this study time, accuracy, sensitivity, specificity and floating point operations numbers(FLOPs) are used as evaluation metrics to optimize the model, which is named RamanCompact(RamanCMP). The experimental data used in this research are selected from the RRUFF public dataset, which consists of 723 Raman spectroscopy data samples from 10 different mineral categories. In this paper, 1D-EfficientNet adapted to the spectral data as well as 1D-DRSN are proposed to improve the model classification accuracy. To achieve better classification accuracy while optimizing the time parameters, three model compression methods are designed: knowledge distillation using 1D-EfficientNet model as a teacher model to train convolutional neural networks(CNN), proposing a channel conversion method to optimize 1D-DRSN model, and using 1D-DRSN model as a feature extractor in combination with linear discriminant analysis(LDA) model for classification. Compared with the traditional LDA and CNN models, the accuracy of 1D-EfficientNet and 1D-DRSN is improved by more than 20%. The time of the distilled model is reduced by 9680.9s compared with the teacher model 1D-EfficientNet under the condition of losing 2.07% accuracy. The accuracy of the distilled model is improved by 20% compared to the CNN student model while keeping inference efficiency constant. The 1D-DRSN optimized with channel conversion method saves 60% inference time of the original 1D-DRSN model. Feature extraction reduces the inference time of 1D-DRSN model by 93% with 94.48% accuracy. This study innovatively combines lightweight models and model compression algorithms to improve the classification speed of deep learning models in the field of Raman spectroscopy, forming a complete set of analysis methods and laying the foundation for future research.
ArticleNumber 341758
Author Chen, Chen
Tian, Xuecong
Gong, Zhongcheng
Chen, Cheng
Li, Chenxi
Gong, Zengyun
Lv, Xiaoyi
Author_xml – sequence: 1
  givenname: Zengyun
  surname: Gong
  fullname: Gong, Zengyun
  email: g18999390232@sina.com
  organization: College of Software, Xinjiang University, Urumqi, 830046, Xinjiang, China
– sequence: 2
  givenname: Chen
  surname: Chen
  fullname: Chen, Chen
  email: 1343432873@qq.com
  organization: College of Information Science and Engineering, Xinjiang University, Urumqi, 830046, Xinjian, China
– sequence: 3
  givenname: Cheng
  surname: Chen
  fullname: Chen, Cheng
  email: chenchengoptics@gmail.com
  organization: College of Software, Xinjiang University, Urumqi, 830046, Xinjiang, China
– sequence: 4
  givenname: Chenxi
  surname: Li
  fullname: Li, Chenxi
  email: lichenxiuke@gmail.com
  organization: Oncological Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, Xinjiang, China
– sequence: 5
  givenname: Xuecong
  surname: Tian
  fullname: Tian, Xuecong
  email: xuecongtian@gmail.com
  organization: College of Information Science and Engineering, Xinjiang University, Urumqi, 830046, Xinjian, China
– sequence: 6
  givenname: Zhongcheng
  surname: Gong
  fullname: Gong, Zhongcheng
  email: 565249755@qq.com
  organization: Oncological Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, Xinjiang, China
– sequence: 7
  givenname: Xiaoyi
  orcidid: 0000-0002-8023-4119
  surname: Lv
  fullname: Lv, Xiaoyi
  email: xjuwawj01@163.com
  organization: College of Software, Xinjiang University, Urumqi, 830046, Xinjiang, China
BookMark eNp9kctu2zAQRYnAAeI8PiA7LruRy4ciSu3KMJq2QIoEQbImRsNxTUMSXVJJ4b8PHWWVhTfDucC9Q87hOZsNYSDGrqVYSCGrr9sFICyUUHqhS2lu6hM2l7XRRalVOWNzIYQuVGXEGTtPaZulkqKcs_0j9DCs_jx840v-3vO0IxwjdBw7SMmvPcLow8ABkTqKk-hp3ATHW0jkeNad_7sZ_9Oh8j446jgM7qPD0O8i5VHZNxJuBv_vhdIlO11Dl-jq47xgz7c_nla_irv7n79Xy7sCtRZj4WQjWgV107YGGpBCV2WLlUKd1zaNAyFzIVXn1xksTWW0g3XdGE0IWLb6gn2Z5u5iONw72t6nvEkHA4WXZFVd3ZjaSG2yVU5WjCGlSGu7i76HuLdS2ANmu7UZsz1gthPmnDGfMujHd0aZoe-OJr9PScrbv3qKNqGnAcn5mH_AuuCPpN8AveWbUw
CitedBy_id crossref_primary_10_1016_j_heliyon_2024_e32087
crossref_primary_10_1038_s41598_024_64621_4
crossref_primary_10_1016_j_artmed_2024_103053
Cites_doi 10.1016/j.fuel.2019.02.096
10.1002/jrs.4340
10.1002/jrs.5214
10.1016/j.jallcom.2015.09.273
10.1016/j.ymssp.2020.107398
10.1002/jrs.1574
10.1038/s42254-020-0171-y
10.1016/j.saa.2003.12.021
10.1016/j.cosrev.2021.100378
10.3390/bios9020057
10.1038/s41598-021-84565-3
10.3390/ijms20184414
10.1016/j.cej.2020.128208
10.3389/frobt.2015.00036
10.1208/s12249-022-02335-4
10.3390/bios11060187
10.1016/j.eswa.2017.05.039
10.1007/s10618-019-00619-1
10.1109/TII.2019.2943898
10.1016/j.earscirev.2019.102936
10.1002/adsu.201900062
10.1111/maps.13106
10.1145/3439726
10.1007/s00269-016-0824-7
10.1016/j.patrec.2020.07.042
10.1016/j.molstruc.2009.01.001
10.1016/j.saa.2018.07.079
10.1186/s11671-019-3039-2
ContentType Journal Article
Copyright 2023 Elsevier B.V.
Copyright © 2023 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2023 Elsevier B.V.
– notice: Copyright © 2023 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
7X8
DOI 10.1016/j.aca.2023.341758
DatabaseName CrossRef
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1873-4324
ExternalDocumentID 10_1016_j_aca_2023_341758
S0003267023009790
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXUO
ABFNM
ABFRF
ABFYP
ABGSF
ABJNI
ABLST
ABMAC
ABUDA
ABYKQ
ACBEA
ACCUC
ACDAQ
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
ACRLP
ADBBV
ADECG
ADEZE
ADUVX
AEBSH
AEFWE
AEHWI
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AFXIZ
AFZHZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AJSZI
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLECG
BLXMC
CS3
DOVZS
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
K-O
KCYFY
KOM
M36
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCC
SCH
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSJ
SSK
SSU
SSZ
T5K
TN5
TWZ
UPT
WH7
YK3
ZMT
~02
~G-
.GJ
3O-
53G
9DU
AAHBH
AAQXK
AATTM
AAXKI
AAYJJ
AAYWO
AAYXX
ABDPE
ABEFU
ABWVN
ABXDB
ACKIV
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AGRDE
AI.
AIGII
AIIUN
AJQLL
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FA8
FEDTE
FGOYB
HMU
HVGLF
HZ~
H~9
MVM
NHB
R2-
SCB
T9H
UQL
VH1
WUQ
XOL
XPP
ZCG
ZXP
ZY4
~HD
7X8
ID FETCH-LOGICAL-c330t-d190b2a89bb7a9a10364bc62c301679da019dae28cce7c47673daf8973ecac4b3
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001070863600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0003-2670
1873-4324
IngestDate Sun Sep 28 10:22:48 EDT 2025
Sat Nov 29 07:01:01 EST 2025
Tue Nov 18 21:40:02 EST 2025
Fri Feb 23 02:35:48 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Lightweight model
Raman spectroscopy
RamanCMP
Model compression
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c330t-d190b2a89bb7a9a10364bc62c301679da019dae28cce7c47673daf8973ecac4b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-8023-4119
PQID 2865787137
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2865787137
crossref_primary_10_1016_j_aca_2023_341758
crossref_citationtrail_10_1016_j_aca_2023_341758
elsevier_sciencedirect_doi_10_1016_j_aca_2023_341758
PublicationCentury 2000
PublicationDate 2023-10-16
PublicationDateYYYYMMDD 2023-10-16
PublicationDate_xml – month: 10
  year: 2023
  text: 2023-10-16
  day: 16
PublicationDecade 2020
PublicationTitle Analytica chimica acta
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Xu (bib11) 2020; 49
Carlomagno (bib4) 2021; 11
Menghani (bib25) 2021
Hua (bib19) 2018
Wang (bib15) 2021; 141
Armbruster (bib26) 2015
Petersen (bib5) 2021; 11
Lauer (bib6) 2019; 3
Henry (bib8) 2019; 198
Karwowski (bib28) 2013; 44
Hinton (bib24) 2015; vol. 2
Jehlička (bib31) 2017; 48
Srinivas (bib40) 2016; 2
Mu (bib16) 2019; 13
Sheng (bib9) 2022; 23
Zhang (bib33) 2018; 53
Zhao (bib39) 2019; 16
Zhu (bib23) 2017
Juroszek (bib30) 2018; 205
Chollet (bib20) 2017
Frost (bib29) 2007; 38
Lee (bib42) 2020; 67
Schulte (bib35) 1995
Roelofs (bib37) 2019; 32
Jones (bib1) 2019; 14
Minaee (bib12) 2021; 54
Tan (bib38) 2019
Anowar (bib43) 2021; 40
Makreski (bib36) 2009; 924
Duch (bib44) 2006
Varshni (bib46) 2019
Cho (bib47) 2019
Hsiao (bib21) 2021
Li (bib32) 2016; 657
Chen (bib10) 2019; 246
Pilot (bib3) 2019; 9
Qin (bib34) 2016; 43
Cai (bib7) 2021; 410
Wang (bib2) 2020; 2
Ismail Fawaz (bib13) 2019; 33
Wang (bib17) 2019
Guo (bib18) 2019
Sompairac (bib45) 2019; 20
Zhang (bib22) 2018
Kiranyaz (bib41) 2021; 151
Affonso (bib14) 2017; 85
Gopal (bib27) 2004; 60
Hua (10.1016/j.aca.2023.341758_bib19) 2018
Lee (10.1016/j.aca.2023.341758_bib42) 2020; 67
Anowar (10.1016/j.aca.2023.341758_bib43) 2021; 40
Minaee (10.1016/j.aca.2023.341758_bib12) 2021; 54
Guo (10.1016/j.aca.2023.341758_bib18) 2019
Hsiao (10.1016/j.aca.2023.341758_bib21) 2021
Zhao (10.1016/j.aca.2023.341758_bib39) 2019; 16
Jones (10.1016/j.aca.2023.341758_bib1) 2019; 14
Schulte (10.1016/j.aca.2023.341758_bib35) 1995
Sompairac (10.1016/j.aca.2023.341758_bib45) 2019; 20
Carlomagno (10.1016/j.aca.2023.341758_bib4) 2021; 11
Gopal (10.1016/j.aca.2023.341758_bib27) 2004; 60
Tan (10.1016/j.aca.2023.341758_bib38) 2019
Wang (10.1016/j.aca.2023.341758_bib15) 2021; 141
Mu (10.1016/j.aca.2023.341758_bib16) 2019; 13
Roelofs (10.1016/j.aca.2023.341758_bib37) 2019; 32
Juroszek (10.1016/j.aca.2023.341758_bib30) 2018; 205
Cho (10.1016/j.aca.2023.341758_bib47) 2019
Wang (10.1016/j.aca.2023.341758_bib2) 2020; 2
Ismail Fawaz (10.1016/j.aca.2023.341758_bib13) 2019; 33
Makreski (10.1016/j.aca.2023.341758_bib36) 2009; 924
Petersen (10.1016/j.aca.2023.341758_bib5) 2021; 11
Jehlička (10.1016/j.aca.2023.341758_bib31) 2017; 48
Chollet (10.1016/j.aca.2023.341758_bib20) 2017
Pilot (10.1016/j.aca.2023.341758_bib3) 2019; 9
Henry (10.1016/j.aca.2023.341758_bib8) 2019; 198
Zhang (10.1016/j.aca.2023.341758_bib22) 2018
Cai (10.1016/j.aca.2023.341758_bib7) 2021; 410
Menghani (10.1016/j.aca.2023.341758_bib25) 2021
Sheng (10.1016/j.aca.2023.341758_bib9) 2022; 23
Karwowski (10.1016/j.aca.2023.341758_bib28) 2013; 44
Frost (10.1016/j.aca.2023.341758_bib29) 2007; 38
Qin (10.1016/j.aca.2023.341758_bib34) 2016; 43
Affonso (10.1016/j.aca.2023.341758_bib14) 2017; 85
Wang (10.1016/j.aca.2023.341758_bib17) 2019
Xu (10.1016/j.aca.2023.341758_bib11) 2020; 49
Zhu (10.1016/j.aca.2023.341758_bib23) 2017
Duch (10.1016/j.aca.2023.341758_bib44) 2006
Kiranyaz (10.1016/j.aca.2023.341758_bib41) 2021; 151
Lauer (10.1016/j.aca.2023.341758_bib6) 2019; 3
Armbruster (10.1016/j.aca.2023.341758_bib26) 2015
Zhang (10.1016/j.aca.2023.341758_bib33) 2018; 53
Hinton (10.1016/j.aca.2023.341758_bib24) 2015; vol. 2
Varshni (10.1016/j.aca.2023.341758_bib46) 2019
Li (10.1016/j.aca.2023.341758_bib32) 2016; 657
Srinivas (10.1016/j.aca.2023.341758_bib40) 2016; 2
Chen (10.1016/j.aca.2023.341758_bib10) 2019; 246
References_xml – year: 2019
  ident: bib17
  article-title: Fully learnable group convolution for acceleration of deep neural networks
  publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
– year: 2021
  ident: bib25
  article-title: Efficient Deep Learning: A Survey on Making Deep Learning Models Smaller, Faster, and Better
– year: 2018
  ident: bib19
  article-title: Pointwise convolutional neural networks
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– year: 2019
  ident: bib38
  article-title: Efficientnet: rethinking model scaling for convolutional neural networks
  publication-title: International Conference on Machine Learning
– volume: 9
  start-page: 57
  year: 2019
  ident: bib3
  article-title: A review on surface-enhanced Raman scattering
  publication-title: Biosensors
– volume: 3
  year: 2019
  ident: bib6
  article-title: Durable cellulose–sulfur composites derived from agricultural and petrochemical waste
  publication-title: Adv. Sustain. Syst.
– volume: 410
  year: 2021
  ident: bib7
  article-title: Analysis of environmental nanoplastics: progress and challenges
  publication-title: Chem. Eng. J.
– volume: 246
  start-page: 60
  year: 2019
  end-page: 68
  ident: bib10
  article-title: The quantitative assessment of coke morphology based on the Raman spectroscopic characterization of serial petroleum cokes
  publication-title: Fuel
– volume: 151
  year: 2021
  ident: bib41
  article-title: 1D convolutional neural networks and applications: a survey
  publication-title: Mech. Syst. Signal Process.
– volume: 205
  start-page: 582
  year: 2018
  end-page: 592
  ident: bib30
  article-title: Raman spectroscopy and structural study of baryte-hashemite solid solution from pyrometamorphic rocks of the Hatrurim Complex, Israel
  publication-title: Spectrochim. Acta Mol. Biomol. Spectrosc.
– volume: 16
  start-page: 4681
  year: 2019
  end-page: 4690
  ident: bib39
  article-title: Deep residual shrinkage networks for fault diagnosis
  publication-title: IEEE Trans. Ind. Inf.
– volume: 11
  start-page: 187
  year: 2021
  ident: bib5
  article-title: Application of Raman spectroscopic methods in food safety: a review
  publication-title: Biosensors
– year: 2018
  ident: bib22
  article-title: Shufflenet: an extremely efficient convolutional neural network for mobile devices
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– year: 2019
  ident: bib46
  article-title: Pneumonia detection using CNN based feature extraction
  publication-title: 2019 IEEE International Conference on Electrical, Computer and Communication Technologies (ICECCT)
– volume: 14
  start-page: 1
  year: 2019
  end-page: 34
  ident: bib1
  article-title: Raman techniques: fundamentals and frontiers
  publication-title: Nanoscale Res. Lett.
– year: 2019
  ident: bib18
  article-title: Depthwise convolution is all you need for learning multiple visual domains
  publication-title: Proceedings of the AAAI Conference on Artificial Intelligence
– year: 1995
  ident: bib35
  article-title: Raman spectroscopy of fluorophosphate and fluorovanadate laser crystals
  publication-title: UV and Visible Lasers and Laser Crystal Growth
– volume: vol. 2
  year: 2015
  ident: bib24
  publication-title: Distilling the Knowledge in a Neural Network
– volume: 657
  start-page: 152
  year: 2016
  end-page: 156
  ident: bib32
  article-title: The effect of strong magnetic field on the microstructure of pure diopside and diopside doped with Fe3+ or Mn2+
  publication-title: J. Alloys Compd.
– volume: 67
  start-page: 1344
  year: 2020
  end-page: 1353
  ident: bib42
  article-title: Channel attention module with multiscale grid average pooling for breast cancer segmentation in an ultrasound image
  publication-title: IEEE Trans. Ultrason. Ferroelectrics Freq. Control
– start-page: 89
  year: 2006
  end-page: 117
  ident: bib44
  article-title: Feature Extraction: Foundations and Applications
– volume: 49
  year: 2020
  ident: bib11
  article-title: Raman mineral recognition method based on all-optical diffraction deep neural network
  publication-title: 红外与激光工程
– volume: 40
  year: 2021
  ident: bib43
  article-title: Conceptual and empirical comparison of dimensionality reduction algorithms (pca, kpca, lda, mds, svd, lle, isomap, le, ica, t-sne)
  publication-title: Comput. Sci. Rev.
– year: 2019
  ident: bib47
  article-title: On the efficacy of knowledge distillation
  publication-title: Proceedings of the IEEE/CVF International Conference on Computer Vision
– volume: 13
  start-page: 1738
  year: 2019
  end-page: 1764
  ident: bib16
  article-title: A review of deep learning research
  publication-title: KSII Transactions on Internet and Information Systems (TIIS)
– volume: 43
  start-page: 649
  year: 2016
  end-page: 659
  ident: bib34
  article-title: High-pressure behavior of natural single-crystal epidote and clinozoisite up to 40 GPa
  publication-title: Phys. Chem. Miner.
– volume: 85
  start-page: 114
  year: 2017
  end-page: 122
  ident: bib14
  article-title: Deep learning for biological image classification
  publication-title: Expert Syst. Appl.
– year: 2021
  ident: bib21
  article-title: Efficient computation of depthwise separable convolution in MoblieNet deep neural network models
  publication-title: 2021 IEEE International Conference on Consumer Electronics-Taiwan (ICCE-TW)
– volume: 33
  start-page: 917
  year: 2019
  end-page: 963
  ident: bib13
  article-title: Deep learning for time series classification: a review
  publication-title: Data Min. Knowl. Discov.
– volume: 32
  year: 2019
  ident: bib37
  article-title: A meta-analysis of overfitting in machine learning
  publication-title: Adv. Neural Inf. Process. Syst.
– year: 2017
  ident: bib23
  article-title: To Prune, or Not to Prune: Exploring the Efficacy of Pruning for Model Compression
– volume: 924
  start-page: 413
  year: 2009
  end-page: 419
  ident: bib36
  article-title: Minerals from Macedonia. XXIV. Spectra-structure characterization of tectosilicates
  publication-title: J. Mol. Struct.
– volume: 141
  start-page: 61
  year: 2021
  end-page: 67
  ident: bib15
  article-title: Comparative analysis of image classification algorithms based on traditional machine learning and deep learning
  publication-title: Pattern Recogn. Lett.
– volume: 53
  start-page: 2067
  year: 2018
  end-page: 2077
  ident: bib33
  article-title: Raman spectroscopy of shocked enstatite‐rich meteorites
  publication-title: Meteoritics Planet Sci.
– start-page: 1
  year: 2015
  end-page: 30
  ident: bib26
  article-title: Highlights in Mineralogical Crystallography
– volume: 2
  start-page: 253
  year: 2020
  end-page: 271
  ident: bib2
  article-title: Fundamental understanding and applications of plasmon-enhanced Raman spectroscopy
  publication-title: Nat. Rev. Phys.
– volume: 23
  start-page: 1
  year: 2022
  end-page: 12
  ident: bib9
  article-title: Visible particle identification using Raman spectroscopy and machine learning
  publication-title: AAPS PharmSciTech
– volume: 54
  start-page: 1
  year: 2021
  end-page: 40
  ident: bib12
  article-title: Deep learning--based text classification: a comprehensive review
  publication-title: ACM Comput. Surv.
– volume: 48
  start-page: 1289
  year: 2017
  end-page: 1299
  ident: bib31
  article-title: Comparison of seven portable Raman spectrometers: beryl as a case study
  publication-title: J. Raman Spectrosc.
– volume: 20
  start-page: 4414
  year: 2019
  ident: bib45
  article-title: Independent component analysis for unraveling the complexity of cancer omics datasets
  publication-title: Int. J. Mol. Sci.
– year: 2017
  ident: bib20
  article-title: Xception: deep learning with depthwise separable convolutions
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: 60
  start-page: 2441
  year: 2004
  end-page: 2448
  ident: bib27
  article-title: EPR, optical, infrared and Raman spectral studies of Actinolite mineral
  publication-title: Spectrochim. Acta Mol. Biomol. Spectrosc.
– volume: 38
  start-page: 135
  year: 2007
  end-page: 141
  ident: bib29
  article-title: Raman spectroscopy of the borosilicate mineral ferroaxinite
  publication-title: J. Raman Spectrosc.: An International Journal for Original Work in all Aspects of Raman Spectroscopy, Including Higher Order Processes, and also Brillouin and Rayleigh Scattering
– volume: 44
  start-page: 1181
  year: 2013
  end-page: 1186
  ident: bib28
  article-title: Raman spectra of selected mineral phases of the Morasko iron meteorite
  publication-title: J. Raman Spectrosc.
– volume: 11
  start-page: 1
  year: 2021
  end-page: 13
  ident: bib4
  article-title: COVID-19 salivary Raman fingerprint: innovative approach for the detection of current and past SARS-CoV-2 infections
  publication-title: Sci. Rep.
– volume: 2
  start-page: 36
  year: 2016
  ident: bib40
  article-title: A taxonomy of deep convolutional neural nets for computer vision
  publication-title: Front. Robot. AI
– volume: 198
  year: 2019
  ident: bib8
  article-title: Raman spectroscopy as a tool to determine the thermal maturity of organic matter: application to sedimentary, metamorphic and structural geology
  publication-title: Earth Sci. Rev.
– volume: 246
  start-page: 60
  year: 2019
  ident: 10.1016/j.aca.2023.341758_bib10
  article-title: The quantitative assessment of coke morphology based on the Raman spectroscopic characterization of serial petroleum cokes
  publication-title: Fuel
  doi: 10.1016/j.fuel.2019.02.096
– volume: 44
  start-page: 1181
  issue: 8
  year: 2013
  ident: 10.1016/j.aca.2023.341758_bib28
  article-title: Raman spectra of selected mineral phases of the Morasko iron meteorite
  publication-title: J. Raman Spectrosc.
  doi: 10.1002/jrs.4340
– volume: 48
  start-page: 1289
  issue: 10
  year: 2017
  ident: 10.1016/j.aca.2023.341758_bib31
  article-title: Comparison of seven portable Raman spectrometers: beryl as a case study
  publication-title: J. Raman Spectrosc.
  doi: 10.1002/jrs.5214
– year: 1995
  ident: 10.1016/j.aca.2023.341758_bib35
  article-title: Raman spectroscopy of fluorophosphate and fluorovanadate laser crystals
– year: 2019
  ident: 10.1016/j.aca.2023.341758_bib17
  article-title: Fully learnable group convolution for acceleration of deep neural networks
– start-page: 1
  year: 2015
  ident: 10.1016/j.aca.2023.341758_bib26
– volume: 657
  start-page: 152
  year: 2016
  ident: 10.1016/j.aca.2023.341758_bib32
  article-title: The effect of strong magnetic field on the microstructure of pure diopside and diopside doped with Fe3+ or Mn2+
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2015.09.273
– year: 2019
  ident: 10.1016/j.aca.2023.341758_bib38
  article-title: Efficientnet: rethinking model scaling for convolutional neural networks
– volume: 13
  start-page: 1738
  issue: 4
  year: 2019
  ident: 10.1016/j.aca.2023.341758_bib16
  article-title: A review of deep learning research
  publication-title: KSII Transactions on Internet and Information Systems (TIIS)
– volume: 151
  year: 2021
  ident: 10.1016/j.aca.2023.341758_bib41
  article-title: 1D convolutional neural networks and applications: a survey
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2020.107398
– volume: 67
  start-page: 1344
  issue: 7
  year: 2020
  ident: 10.1016/j.aca.2023.341758_bib42
  article-title: Channel attention module with multiscale grid average pooling for breast cancer segmentation in an ultrasound image
  publication-title: IEEE Trans. Ultrason. Ferroelectrics Freq. Control
– volume: 38
  start-page: 135
  issue: 2
  year: 2007
  ident: 10.1016/j.aca.2023.341758_bib29
  article-title: Raman spectroscopy of the borosilicate mineral ferroaxinite
  publication-title: J. Raman Spectrosc.: An International Journal for Original Work in all Aspects of Raman Spectroscopy, Including Higher Order Processes, and also Brillouin and Rayleigh Scattering
  doi: 10.1002/jrs.1574
– start-page: 89
  year: 2006
  ident: 10.1016/j.aca.2023.341758_bib44
– volume: 2
  start-page: 253
  issue: 5
  year: 2020
  ident: 10.1016/j.aca.2023.341758_bib2
  article-title: Fundamental understanding and applications of plasmon-enhanced Raman spectroscopy
  publication-title: Nat. Rev. Phys.
  doi: 10.1038/s42254-020-0171-y
– volume: 60
  start-page: 2441
  issue: 11
  year: 2004
  ident: 10.1016/j.aca.2023.341758_bib27
  article-title: EPR, optical, infrared and Raman spectral studies of Actinolite mineral
  publication-title: Spectrochim. Acta Mol. Biomol. Spectrosc.
  doi: 10.1016/j.saa.2003.12.021
– volume: 40
  year: 2021
  ident: 10.1016/j.aca.2023.341758_bib43
  article-title: Conceptual and empirical comparison of dimensionality reduction algorithms (pca, kpca, lda, mds, svd, lle, isomap, le, ica, t-sne)
  publication-title: Comput. Sci. Rev.
  doi: 10.1016/j.cosrev.2021.100378
– volume: 9
  start-page: 57
  issue: 2
  year: 2019
  ident: 10.1016/j.aca.2023.341758_bib3
  article-title: A review on surface-enhanced Raman scattering
  publication-title: Biosensors
  doi: 10.3390/bios9020057
– volume: 11
  start-page: 1
  issue: 1
  year: 2021
  ident: 10.1016/j.aca.2023.341758_bib4
  article-title: COVID-19 salivary Raman fingerprint: innovative approach for the detection of current and past SARS-CoV-2 infections
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-84565-3
– volume: 20
  start-page: 4414
  issue: 18
  year: 2019
  ident: 10.1016/j.aca.2023.341758_bib45
  article-title: Independent component analysis for unraveling the complexity of cancer omics datasets
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms20184414
– year: 2018
  ident: 10.1016/j.aca.2023.341758_bib22
  article-title: Shufflenet: an extremely efficient convolutional neural network for mobile devices
– volume: 410
  year: 2021
  ident: 10.1016/j.aca.2023.341758_bib7
  article-title: Analysis of environmental nanoplastics: progress and challenges
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.128208
– volume: 2
  start-page: 36
  year: 2016
  ident: 10.1016/j.aca.2023.341758_bib40
  article-title: A taxonomy of deep convolutional neural nets for computer vision
  publication-title: Front. Robot. AI
  doi: 10.3389/frobt.2015.00036
– year: 2019
  ident: 10.1016/j.aca.2023.341758_bib46
  article-title: Pneumonia detection using CNN based feature extraction
– volume: 23
  start-page: 1
  issue: 6
  year: 2022
  ident: 10.1016/j.aca.2023.341758_bib9
  article-title: Visible particle identification using Raman spectroscopy and machine learning
  publication-title: AAPS PharmSciTech
  doi: 10.1208/s12249-022-02335-4
– volume: 11
  start-page: 187
  issue: 6
  year: 2021
  ident: 10.1016/j.aca.2023.341758_bib5
  article-title: Application of Raman spectroscopic methods in food safety: a review
  publication-title: Biosensors
  doi: 10.3390/bios11060187
– volume: 49
  issue: 10
  year: 2020
  ident: 10.1016/j.aca.2023.341758_bib11
  article-title: Raman mineral recognition method based on all-optical diffraction deep neural network
  publication-title: 红外与激光工程
– volume: 85
  start-page: 114
  year: 2017
  ident: 10.1016/j.aca.2023.341758_bib14
  article-title: Deep learning for biological image classification
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2017.05.039
– volume: 33
  start-page: 917
  issue: 4
  year: 2019
  ident: 10.1016/j.aca.2023.341758_bib13
  article-title: Deep learning for time series classification: a review
  publication-title: Data Min. Knowl. Discov.
  doi: 10.1007/s10618-019-00619-1
– year: 2021
  ident: 10.1016/j.aca.2023.341758_bib25
– volume: 16
  start-page: 4681
  issue: 7
  year: 2019
  ident: 10.1016/j.aca.2023.341758_bib39
  article-title: Deep residual shrinkage networks for fault diagnosis
  publication-title: IEEE Trans. Ind. Inf.
  doi: 10.1109/TII.2019.2943898
– volume: 32
  year: 2019
  ident: 10.1016/j.aca.2023.341758_bib37
  article-title: A meta-analysis of overfitting in machine learning
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 198
  year: 2019
  ident: 10.1016/j.aca.2023.341758_bib8
  article-title: Raman spectroscopy as a tool to determine the thermal maturity of organic matter: application to sedimentary, metamorphic and structural geology
  publication-title: Earth Sci. Rev.
  doi: 10.1016/j.earscirev.2019.102936
– volume: 3
  issue: 10
  year: 2019
  ident: 10.1016/j.aca.2023.341758_bib6
  article-title: Durable cellulose–sulfur composites derived from agricultural and petrochemical waste
  publication-title: Adv. Sustain. Syst.
  doi: 10.1002/adsu.201900062
– year: 2017
  ident: 10.1016/j.aca.2023.341758_bib23
– year: 2019
  ident: 10.1016/j.aca.2023.341758_bib47
  article-title: On the efficacy of knowledge distillation
– volume: 53
  start-page: 2067
  issue: 10
  year: 2018
  ident: 10.1016/j.aca.2023.341758_bib33
  article-title: Raman spectroscopy of shocked enstatite‐rich meteorites
  publication-title: Meteoritics Planet Sci.
  doi: 10.1111/maps.13106
– volume: 54
  start-page: 1
  issue: 3
  year: 2021
  ident: 10.1016/j.aca.2023.341758_bib12
  article-title: Deep learning--based text classification: a comprehensive review
  publication-title: ACM Comput. Surv.
  doi: 10.1145/3439726
– year: 2018
  ident: 10.1016/j.aca.2023.341758_bib19
  article-title: Pointwise convolutional neural networks
– volume: 43
  start-page: 649
  year: 2016
  ident: 10.1016/j.aca.2023.341758_bib34
  article-title: High-pressure behavior of natural single-crystal epidote and clinozoisite up to 40 GPa
  publication-title: Phys. Chem. Miner.
  doi: 10.1007/s00269-016-0824-7
– year: 2019
  ident: 10.1016/j.aca.2023.341758_bib18
  article-title: Depthwise convolution is all you need for learning multiple visual domains
– year: 2017
  ident: 10.1016/j.aca.2023.341758_bib20
  article-title: Xception: deep learning with depthwise separable convolutions
– volume: 141
  start-page: 61
  year: 2021
  ident: 10.1016/j.aca.2023.341758_bib15
  article-title: Comparative analysis of image classification algorithms based on traditional machine learning and deep learning
  publication-title: Pattern Recogn. Lett.
  doi: 10.1016/j.patrec.2020.07.042
– volume: 924
  start-page: 413
  year: 2009
  ident: 10.1016/j.aca.2023.341758_bib36
  article-title: Minerals from Macedonia. XXIV. Spectra-structure characterization of tectosilicates
  publication-title: J. Mol. Struct.
  doi: 10.1016/j.molstruc.2009.01.001
– volume: 205
  start-page: 582
  year: 2018
  ident: 10.1016/j.aca.2023.341758_bib30
  article-title: Raman spectroscopy and structural study of baryte-hashemite solid solution from pyrometamorphic rocks of the Hatrurim Complex, Israel
  publication-title: Spectrochim. Acta Mol. Biomol. Spectrosc.
  doi: 10.1016/j.saa.2018.07.079
– volume: vol. 2
  year: 2015
  ident: 10.1016/j.aca.2023.341758_bib24
– volume: 14
  start-page: 1
  year: 2019
  ident: 10.1016/j.aca.2023.341758_bib1
  article-title: Raman techniques: fundamentals and frontiers
  publication-title: Nanoscale Res. Lett.
  doi: 10.1186/s11671-019-3039-2
– year: 2021
  ident: 10.1016/j.aca.2023.341758_bib21
  article-title: Efficient computation of depthwise separable convolution in MoblieNet deep neural network models
SSID ssj0002104
Score 2.459535
Snippet In recent years, Raman spectroscopy combined with deep learning techniques has been widely used in various fields such as medical, chemical, and geological....
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 341758
SubjectTerms Lightweight model
Model compression
Raman spectroscopy
RamanCMP
Title RamanCMP: A Raman spectral classification acceleration method based on lightweight model and model compression techniques
URI https://dx.doi.org/10.1016/j.aca.2023.341758
https://www.proquest.com/docview/2865787137
Volume 1278
WOSCitedRecordID wos001070863600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-4324
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002104
  issn: 0003-2670
  databaseCode: AIEXJ
  dateStart: 19950110
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLa6DgleEFcxLpOREA9UQaud1jZvVdVxUSkT6qSKF8tx0qlTycraju5P8Js5x5e0G2MaD7ykzlGSRv2--hz73Ah5lQqusiYbJ6wt0iTNhUoUECdhaaGsMqxtC1dnti8GAzkaqYNa7VfMhTmbirKUq5Wa_VeoQQZgY-rsP8BdPRQEMAbQ4Qiww_FGwH81303Z_Xzgc87dWcPlU2IqvkVjGaODPO7GWlA7gQS-mXQD9VqOPoQprtt_uq1T3zDHORr8CCPRfQRt2ajKwM43LV1X7QQ3yjFfHGsSYNmOSge8D5HA34ry6HxZEbQbckXw8yrZURT2J1G0mmxuXDAXAufzKsNcKwVPsCCgV0VXyOIEzXyXnzDHgt4Vvtz7H9O_34k4BipiSSnG366vvVhqe_BF7x_2-3rYGw1fz34k2IUMvfWhJcsW2WaipWSdbHc-9kafKt0OC2QXpxBfM_rJXcTgpW_9m6VzSec7Q2Z4j9wNKxDa8cy5T2pF-YDc7sbGfw_JeWTQO9qhbkwjf-hF_tBN_lDPH-r4Q-F8gz_UsYYCf8Jogz90zZ9H5HC_N-x-SEKHjsRyvrdIcjAnM2akyjJhlGmiUzuzbWY5Zreo3MACIjcFk_A2wqaiLXhuxlIJXlhj04w_JvXypCyeEAqTSZtbKXkm81QV0vCMZ1lLNo0ct3ia7pC9-GtqG8rXYxeVqY5xiscaANAIgPYA7JA31S0zX7vluovTCJEOxqc3KjWQ67rbXkY4NcCE3jZTFifLucaUb9CGTS6e3uCaZ-TO-j_ynNQXp8viBbllzxaT-eku2RIjuRvI-BuEsrKm
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=RamanCMP%3A+A+Raman+spectral+classification+acceleration+method+based+on+lightweight+model+and+model+compression+techniques&rft.jtitle=Analytica+chimica+acta&rft.au=Gong%2C+Zengyun&rft.au=Chen%2C+Chen&rft.au=Chen%2C+Cheng&rft.au=Li%2C+Chenxi&rft.date=2023-10-16&rft.issn=1873-4324&rft.eissn=1873-4324&rft.volume=1278&rft.spage=341758&rft_id=info:doi/10.1016%2Fj.aca.2023.341758&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-2670&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-2670&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-2670&client=summon