Integral representations for elliptic functions

We derive new integral representations for constituents of the classical theory of elliptic functions: the Eisenstein series, and Weierstrass' ℘ and ζ functions. The derivations proceed from the Laplace–Mellin representation of multipoles, and an elementary lemma on the summation of 2D geometri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical analysis and applications Jg. 316; H. 1; S. 142 - 160
Hauptverfasser: Dienstfrey, Andrew, Huang, Jingfang
Format: Journal Article
Sprache:Englisch
Veröffentlicht: San Diego, CA Elsevier Inc 01.04.2006
Elsevier
Schlagworte:
ISSN:0022-247X, 1096-0813
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We derive new integral representations for constituents of the classical theory of elliptic functions: the Eisenstein series, and Weierstrass' ℘ and ζ functions. The derivations proceed from the Laplace–Mellin representation of multipoles, and an elementary lemma on the summation of 2D geometric series. In addition, we present results concerning the analytic continuation of the Eisenstein series to an entire function in the complex plane, and the value of the conditionally convergent series, denoted by E ˜ 2 below, as a function of summation over increasingly large rectangles with arbitrary fixed aspect ratio. 1 1 Contribution of US Government, not subject to copyright.
ISSN:0022-247X
1096-0813
DOI:10.1016/j.jmaa.2005.04.058