A modified Chan–Vese model and its theoretical proof

We present a modified Chan–Vese functional and give its theoretical proof. By using the geometric heat flow method to all the Euler–Lagrange equations, a system of evolution equations in level set formulation is derived. We study the existence of solution to this system by Schauder fixed point theor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical analysis and applications Jg. 351; H. 2; S. 627 - 634
Hauptverfasser: Pi, Ling, Peng, Yaxin, Shen, Chunli, Li, Fang
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Amsterdam Elsevier Inc 15.03.2009
Elsevier
Schlagworte:
ISSN:0022-247X, 1096-0813
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present a modified Chan–Vese functional and give its theoretical proof. By using the geometric heat flow method to all the Euler–Lagrange equations, a system of evolution equations in level set formulation is derived. We study the existence of solution to this system by Schauder fixed point theorem and the implicit function theorem in Banach space. This variational formulation can detect interior and exterior boundaries of desired object(s) in color images.
ISSN:0022-247X
1096-0813
DOI:10.1016/j.jmaa.2008.10.050