A modified Chan–Vese model and its theoretical proof

We present a modified Chan–Vese functional and give its theoretical proof. By using the geometric heat flow method to all the Euler–Lagrange equations, a system of evolution equations in level set formulation is derived. We study the existence of solution to this system by Schauder fixed point theor...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of mathematical analysis and applications Ročník 351; číslo 2; s. 627 - 634
Hlavní autoři: Pi, Ling, Peng, Yaxin, Shen, Chunli, Li, Fang
Médium: Journal Article
Jazyk:angličtina
Vydáno: Amsterdam Elsevier Inc 15.03.2009
Elsevier
Témata:
ISSN:0022-247X, 1096-0813
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We present a modified Chan–Vese functional and give its theoretical proof. By using the geometric heat flow method to all the Euler–Lagrange equations, a system of evolution equations in level set formulation is derived. We study the existence of solution to this system by Schauder fixed point theorem and the implicit function theorem in Banach space. This variational formulation can detect interior and exterior boundaries of desired object(s) in color images.
ISSN:0022-247X
1096-0813
DOI:10.1016/j.jmaa.2008.10.050