A modified Chan–Vese model and its theoretical proof

We present a modified Chan–Vese functional and give its theoretical proof. By using the geometric heat flow method to all the Euler–Lagrange equations, a system of evolution equations in level set formulation is derived. We study the existence of solution to this system by Schauder fixed point theor...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of mathematical analysis and applications Ročník 351; číslo 2; s. 627 - 634
Hlavní autori: Pi, Ling, Peng, Yaxin, Shen, Chunli, Li, Fang
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Amsterdam Elsevier Inc 15.03.2009
Elsevier
Predmet:
ISSN:0022-247X, 1096-0813
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:We present a modified Chan–Vese functional and give its theoretical proof. By using the geometric heat flow method to all the Euler–Lagrange equations, a system of evolution equations in level set formulation is derived. We study the existence of solution to this system by Schauder fixed point theorem and the implicit function theorem in Banach space. This variational formulation can detect interior and exterior boundaries of desired object(s) in color images.
ISSN:0022-247X
1096-0813
DOI:10.1016/j.jmaa.2008.10.050