A deterministic fully polynomial time approximation scheme for counting integer knapsack solutions made easy

Given n elements with nonnegative integer weights w=(w1,…,wn), an integer capacity C and positive integer ranges u=(u1,…,un), we consider the counting version of the classic integer knapsack problem: find the number of distinct multisets whose weights add up to at most C. We give a deterministic alg...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Theoretical computer science Ročník 645; s. 41 - 47
Hlavní autor: Halman, Nir
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 13.09.2016
Témata:
ISSN:0304-3975, 1879-2294
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Given n elements with nonnegative integer weights w=(w1,…,wn), an integer capacity C and positive integer ranges u=(u1,…,un), we consider the counting version of the classic integer knapsack problem: find the number of distinct multisets whose weights add up to at most C. We give a deterministic algorithm that estimates the number of solutions to within relative error ϵ in time polynomial in n, log⁡U and 1/ϵ, where U=maxi⁡ui. More precisely, our algorithm runs in O(n3log2⁡Uϵlog⁡nlog⁡Uϵ) time. This is an improvement of n2 and 1/ϵ (up to log terms) over the best known deterministic algorithm by Gopalan et al. (2011) [5]. Our algorithm is relatively simple, and its analysis is rather elementary. Our results are achieved by means of a careful formulation of the problem as a dynamic program, using the notion of binding constraints.
AbstractList Given n elements with nonnegative integer weights , an integer capacity C and positive integer ranges , we consider the counting version of the classic integer knapsack problem: find the number of distinct multisets whose weights add up to at most C. We give a deterministic algorithm that estimates the number of solutions to within relative error in time polynomial in n, and , where . More precisely, our algorithm runs in time. This is an improvement of and (up to log terms) over the best known deterministic algorithm by Gopalan et al. (2011) [5]. Our algorithm is relatively simple, and its analysis is rather elementary. Our results are achieved by means of a careful formulation of the problem as a dynamic program, using the notion of binding constraints.
Given n elements with nonnegative integer weights w=(w1,…,wn), an integer capacity C and positive integer ranges u=(u1,…,un), we consider the counting version of the classic integer knapsack problem: find the number of distinct multisets whose weights add up to at most C. We give a deterministic algorithm that estimates the number of solutions to within relative error ϵ in time polynomial in n, log⁡U and 1/ϵ, where U=maxi⁡ui. More precisely, our algorithm runs in O(n3log2⁡Uϵlog⁡nlog⁡Uϵ) time. This is an improvement of n2 and 1/ϵ (up to log terms) over the best known deterministic algorithm by Gopalan et al. (2011) [5]. Our algorithm is relatively simple, and its analysis is rather elementary. Our results are achieved by means of a careful formulation of the problem as a dynamic program, using the notion of binding constraints.
Author Halman, Nir
Author_xml – sequence: 1
  givenname: Nir
  surname: Halman
  fullname: Halman, Nir
  email: halman@huji.ac.il
  organization: Hebrew University of Jerusalem, Israel
BookMark eNp9kMFqHDEMhk1JoJs0D9Cbj73Mxl57PGt6CiFNAoFe2rPxyprUG489tT2h-_b1dnPqIUIgIf5PSP8FOYspIiGfOVtzxtX1fl2hrDetXbOWvP9AVnw76G6z0fKMrJhgshN66D-Si1L2rEU_qBUJN9RhxTz56Ev1QMclhAOdUzjENHkbaPUTUjvPOf3xk60-RVrgF7bhmDKFtMTq4zP1seIzZvoS7VwsvNCSwnJUFzpZhxRtOXwi56MNBa_e6iX5-e3ux-1D9_T9_vH25qkDIVjtdls9CBSOWwkb6TQoAc71WjPcSQAErfQONd8hG7eWg0SUCIJzqcZRWicuyZfT3nb07wVLNZMvgCHYiGkphm9F3yuletWkw0kKOZWScTTg678va7Y-GM7M0V-zN81fc_TXsJa8byT_j5xzMygf3mW-nhhs3796zKaAxwjofEaoxiX_Dv0XLSyZZw
CitedBy_id crossref_primary_10_1007_s00453_022_00954_8
crossref_primary_10_1287_ijoc_2023_0126
crossref_primary_10_1137_19M1308633
crossref_primary_10_1137_18M1208423
crossref_primary_10_1007_s11042_017_4956_7
crossref_primary_10_1007_s11590_018_1251_0
crossref_primary_10_1287_opre_2019_1904
Cites_doi 10.1137/130925153
10.1287/moor.1090.0391
10.1137/11083976X
ContentType Journal Article
Copyright 2016
Copyright_xml – notice: 2016
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.tcs.2016.06.015
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Computer Science
EISSN 1879-2294
EndPage 47
ExternalDocumentID 10_1016_j_tcs_2016_06_015
S0304397516302511
GrantInformation_xml – fundername: Jerusalem School of Business Administration
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
6I.
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABAOU
ABBOA
ABJNI
ABMAC
ABVKL
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AEXQZ
AFKWA
AFTJW
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
IHE
IXB
J1W
KOM
LG9
M26
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SCC
SDF
SDG
SES
SPC
SPCBC
SSV
SSW
SSZ
T5K
TN5
WH7
YNT
ZMT
~G-
29Q
9DU
AAEDT
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABEFU
ABFNM
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGHFR
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FGOYB
G-2
HZ~
R2-
SEW
TAE
WUQ
ZY4
~HD
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c330t-b8973e3d1a4c24d9c63cdd5990eb4ccec969be91be0f8a1c4ee4ec31146ff4ad3
ISICitedReferencesCount 8
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000383822800003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0304-3975
IngestDate Wed Oct 01 12:40:44 EDT 2025
Tue Nov 18 21:31:42 EST 2025
Sat Nov 29 05:15:24 EST 2025
Fri Feb 23 02:30:22 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Integer knapsack
Dynamic programming
Binding constraints
K-approximating sets and functions
Approximate counting
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c330t-b8973e3d1a4c24d9c63cdd5990eb4ccec969be91be0f8a1c4ee4ec31146ff4ad3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1835566656
PQPubID 23500
PageCount 7
ParticipantIDs proquest_miscellaneous_1835566656
crossref_citationtrail_10_1016_j_tcs_2016_06_015
crossref_primary_10_1016_j_tcs_2016_06_015
elsevier_sciencedirect_doi_10_1016_j_tcs_2016_06_015
PublicationCentury 2000
PublicationDate 2016-09-13
PublicationDateYYYYMMDD 2016-09-13
PublicationDate_xml – month: 09
  year: 2016
  text: 2016-09-13
  day: 13
PublicationDecade 2010
PublicationTitle Theoretical computer science
PublicationYear 2016
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Rizzi, Tomescu (br0080) 2014
Megiddo (br0040) 1989; vol. 12
Halman, Klabjan, Li, Orlin, Simchi-Levi (br0100) 2014; 28
Dyer (br0030) 2003
Jerrum, Sinclair (br0010) 1996
Meka, Zuckerman (br0070) 2010
Štefankovič, Vempala, Vigoda (br0020) 2012; 41
Gopalan, Klivans, Meka (br0060) 2010
Gopalan, Klivans, Meka, Štefankovič, Vempala, Vigoda (br0050) 2011
Halman, Klabjan, Mostagir, Orlin, Simchi-Levi (br0090) 2009; 34
Gopalan (10.1016/j.tcs.2016.06.015_br0050) 2011
Štefankovič (10.1016/j.tcs.2016.06.015_br0020) 2012; 41
Dyer (10.1016/j.tcs.2016.06.015_br0030) 2003
Meka (10.1016/j.tcs.2016.06.015_br0070) 2010
Rizzi (10.1016/j.tcs.2016.06.015_br0080) 2014
Halman (10.1016/j.tcs.2016.06.015_br0090) 2009; 34
Halman (10.1016/j.tcs.2016.06.015_br0100) 2014; 28
Jerrum (10.1016/j.tcs.2016.06.015_br0010) 1996
Megiddo (10.1016/j.tcs.2016.06.015_br0040) 1989; vol. 12
Gopalan (10.1016/j.tcs.2016.06.015_br0060)
References_xml – start-page: 482
  year: 1996
  end-page: 520
  ident: br0010
  article-title: The Markov chain Monte Carlo method: an approach to approximate counting and integration
  publication-title: Approximation Algorithms for NP-Hard Problems
– year: 2010
  ident: br0060
  article-title: Polynomial-time approximation schemes for Knapsack and related counting problems using branching programs
– start-page: 762
  year: 2014
  end-page: 773
  ident: br0080
  article-title: Faster FPTASes for counting and random generation of knapsack solutions
  publication-title: Proceedings of the 22nd Annual European Symposium on Algorithms (ESA)
– volume: 41
  start-page: 356
  year: 2012
  end-page: 366
  ident: br0020
  article-title: A deterministic polynomial-time approximation scheme for counting knapsack solutions
  publication-title: SIAM J. Sci. Comput.
– start-page: 693
  year: 2003
  end-page: 699
  ident: br0030
  article-title: Approximate counting by dynamic programming
  publication-title: Proceedings of the 35th Annual ACM Symposium on Theory of Computing (STOC)
– volume: vol. 12
  start-page: 225
  year: 1989
  end-page: 268
  ident: br0040
  article-title: On the complexity of linear programming
  publication-title: Advances in Economic Theory
– start-page: 817
  year: 2011
  end-page: 826
  ident: br0050
  article-title: An FPTAS for #Knapsack and related counting problems
  publication-title: IEEE 52nd Annual Symposium on Foundations of Computer Science (FOCS)
– volume: 28
  start-page: 1725
  year: 2014
  end-page: 1796
  ident: br0100
  article-title: Fully polynomial time approximation schemes for stochastic dynamic programs
  publication-title: SIAM J. Discrete Math.
– start-page: 427
  year: 2010
  end-page: 436
  ident: br0070
  article-title: Pseudorandom generators for polynomial threshold functions
  publication-title: Proceedings of the 42nd ACM Symposium on Theory of Computing (STOC)
– volume: 34
  start-page: 674
  year: 2009
  end-page: 685
  ident: br0090
  article-title: A fully polynomial time approximation scheme for single-item stochastic inventory control with discrete demand
  publication-title: Math. Oper. Res.
– volume: 28
  start-page: 1725
  year: 2014
  ident: 10.1016/j.tcs.2016.06.015_br0100
  article-title: Fully polynomial time approximation schemes for stochastic dynamic programs
  publication-title: SIAM J. Discrete Math.
  doi: 10.1137/130925153
– ident: 10.1016/j.tcs.2016.06.015_br0060
– start-page: 693
  year: 2003
  ident: 10.1016/j.tcs.2016.06.015_br0030
  article-title: Approximate counting by dynamic programming
– start-page: 817
  year: 2011
  ident: 10.1016/j.tcs.2016.06.015_br0050
  article-title: An FPTAS for #Knapsack and related counting problems
– start-page: 762
  year: 2014
  ident: 10.1016/j.tcs.2016.06.015_br0080
  article-title: Faster FPTASes for counting and random generation of knapsack solutions
– volume: vol. 12
  start-page: 225
  year: 1989
  ident: 10.1016/j.tcs.2016.06.015_br0040
  article-title: On the complexity of linear programming
– volume: 34
  start-page: 674
  year: 2009
  ident: 10.1016/j.tcs.2016.06.015_br0090
  article-title: A fully polynomial time approximation scheme for single-item stochastic inventory control with discrete demand
  publication-title: Math. Oper. Res.
  doi: 10.1287/moor.1090.0391
– volume: 41
  start-page: 356
  year: 2012
  ident: 10.1016/j.tcs.2016.06.015_br0020
  article-title: A deterministic polynomial-time approximation scheme for counting knapsack solutions
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/11083976X
– start-page: 482
  year: 1996
  ident: 10.1016/j.tcs.2016.06.015_br0010
  article-title: The Markov chain Monte Carlo method: an approach to approximate counting and integration
– start-page: 427
  year: 2010
  ident: 10.1016/j.tcs.2016.06.015_br0070
  article-title: Pseudorandom generators for polynomial threshold functions
SSID ssj0000576
Score 2.2185938
Snippet Given n elements with nonnegative integer weights w=(w1,…,wn), an integer capacity C and positive integer ranges u=(u1,…,un), we consider the counting version...
Given n elements with nonnegative integer weights , an integer capacity C and positive integer ranges , we consider the counting version of the classic integer...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 41
SubjectTerms Algorithms
Approximate counting
Approximation
Binding
Binding constraints
Dynamic programming
Estimates
Integer knapsack
Integers
K-approximating sets and functions
Mathematical analysis
Mathematical models
Polynomials
Title A deterministic fully polynomial time approximation scheme for counting integer knapsack solutions made easy
URI https://dx.doi.org/10.1016/j.tcs.2016.06.015
https://www.proquest.com/docview/1835566656
Volume 645
WOSCitedRecordID wos000383822800003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-2294
  dateEnd: 20180131
  omitProxy: false
  ssIdentifier: ssj0000576
  issn: 0304-3975
  databaseCode: AIEXJ
  dateStart: 19950109
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEBZL0kN76CNtSZo2qNBTjYu1lh86LiUlKe3Swxb2ZmRpDJvsOst6Ezb_PiNL8j5KQnPIxRhjC9nzeUajmfmGkC9SVjrOSkDwVlHIZQr4z0VVaGx3ovqZFLJqm01kw2E-Hos_vd4vXwtzM83qOl-txPxJRY3XUNimdPYR4u4GxQt4jkLHI4odj_8l-EGgXYpLy8EcmA32W9OM4dZUILdVIjOwXOKriS1cDNDFhZml_-6aR7REErAILms5b6S6DLppBzOpIQDZbIWERxslkcr1igicgV3ruanbcR1OFpsbDiw12RG2XtQXWplgirANT7wSTXmyoQYtl5UzqJZR8x9VbXcNLr4tlWFNZ2lLo2pLO7dpsXfMVZdE6PPTLgocojBDFCZHzzAO7PezRKCO2x-cn45_ri1zktnYtXsBH-Vu8_125nHfOmXHYrfLkNFr8tL5D3Rg5f6G9KA-IK98bw7qVPUBefG74-Nt3pLpgG6BgragoGtQUAMKugUKakFBERTUg4I6UFAPCtqBghpQUAOKd-Tvj9PR97PQ9dkIVRxHy7DMRRZDrJnkqs-1UGmstMYPGEHJlQIlUlGCYCVEVS6Z4gAcVGzq2auKSx2_J3v1VQ2HhHKtGZNZwipV8YSpnMVSmuA-urESV8NHJPJftVCOhN70QpkW90rziHztHplbBpaHbuZeVIVDuF0aFgi7hx777MVaoHo1MTNZw9V1U6DFS9DjQa_nw2PmcUyer3-dj2RvubiGT-SZullOmsWJw-Ud9EmkTg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+deterministic+fully+polynomial+time+approximation+scheme+for+counting+integer+knapsack+solutions+made+easy&rft.jtitle=Theoretical+computer+science&rft.au=Halman%2C+Nir&rft.date=2016-09-13&rft.issn=0304-3975&rft.volume=645&rft.spage=41&rft.epage=47&rft_id=info:doi/10.1016%2Fj.tcs.2016.06.015&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_tcs_2016_06_015
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-3975&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-3975&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-3975&client=summon