A deterministic fully polynomial time approximation scheme for counting integer knapsack solutions made easy

Given n elements with nonnegative integer weights w=(w1,…,wn), an integer capacity C and positive integer ranges u=(u1,…,un), we consider the counting version of the classic integer knapsack problem: find the number of distinct multisets whose weights add up to at most C. We give a deterministic alg...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Theoretical computer science Ročník 645; s. 41 - 47
Hlavný autor: Halman, Nir
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier B.V 13.09.2016
Predmet:
ISSN:0304-3975, 1879-2294
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Given n elements with nonnegative integer weights w=(w1,…,wn), an integer capacity C and positive integer ranges u=(u1,…,un), we consider the counting version of the classic integer knapsack problem: find the number of distinct multisets whose weights add up to at most C. We give a deterministic algorithm that estimates the number of solutions to within relative error ϵ in time polynomial in n, log⁡U and 1/ϵ, where U=maxi⁡ui. More precisely, our algorithm runs in O(n3log2⁡Uϵlog⁡nlog⁡Uϵ) time. This is an improvement of n2 and 1/ϵ (up to log terms) over the best known deterministic algorithm by Gopalan et al. (2011) [5]. Our algorithm is relatively simple, and its analysis is rather elementary. Our results are achieved by means of a careful formulation of the problem as a dynamic program, using the notion of binding constraints.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0304-3975
1879-2294
DOI:10.1016/j.tcs.2016.06.015