Numerical algorithms for diffusion–reaction problems with non-classical conditions

Parabolic equations with nonlocal boundary conditions have been given considerable attention in recent years. In this paper new high-order algorithms for the linear diffusion–reaction problem are derived. The convergence of the new schemes is studied and numerical examples are given to show the effi...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Applied mathematics and computation Ročník 218; číslo 9; s. 5487 - 5495
Hlavní autori: Martín-Vaquero, J., Queiruga-Dios, A., Encinas, A.H.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Inc 2012
Predmet:
ISSN:0096-3003, 1873-5649
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Parabolic equations with nonlocal boundary conditions have been given considerable attention in recent years. In this paper new high-order algorithms for the linear diffusion–reaction problem are derived. The convergence of the new schemes is studied and numerical examples are given to show the efficiency of the new methods to solve linear and nonlinear diffusion–reaction equations with these non classical conditions.
Bibliografia:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0096-3003
1873-5649
DOI:10.1016/j.amc.2011.11.037