Numerical algorithms for diffusion–reaction problems with non-classical conditions

Parabolic equations with nonlocal boundary conditions have been given considerable attention in recent years. In this paper new high-order algorithms for the linear diffusion–reaction problem are derived. The convergence of the new schemes is studied and numerical examples are given to show the effi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied mathematics and computation Jg. 218; H. 9; S. 5487 - 5495
Hauptverfasser: Martín-Vaquero, J., Queiruga-Dios, A., Encinas, A.H.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Inc 2012
Schlagworte:
ISSN:0096-3003, 1873-5649
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Parabolic equations with nonlocal boundary conditions have been given considerable attention in recent years. In this paper new high-order algorithms for the linear diffusion–reaction problem are derived. The convergence of the new schemes is studied and numerical examples are given to show the efficiency of the new methods to solve linear and nonlinear diffusion–reaction equations with these non classical conditions.
Bibliographie:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0096-3003
1873-5649
DOI:10.1016/j.amc.2011.11.037