Numerical algorithms for diffusion–reaction problems with non-classical conditions
Parabolic equations with nonlocal boundary conditions have been given considerable attention in recent years. In this paper new high-order algorithms for the linear diffusion–reaction problem are derived. The convergence of the new schemes is studied and numerical examples are given to show the effi...
Gespeichert in:
| Veröffentlicht in: | Applied mathematics and computation Jg. 218; H. 9; S. 5487 - 5495 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier Inc
2012
|
| Schlagworte: | |
| ISSN: | 0096-3003, 1873-5649 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | Parabolic equations with nonlocal boundary conditions have been given considerable attention in recent years. In this paper new high-order algorithms for the linear diffusion–reaction problem are derived. The convergence of the new schemes is studied and numerical examples are given to show the efficiency of the new methods to solve linear and nonlinear diffusion–reaction equations with these non classical conditions. |
|---|---|
| Bibliographie: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
| ISSN: | 0096-3003 1873-5649 |
| DOI: | 10.1016/j.amc.2011.11.037 |