Numerical algorithms for diffusion–reaction problems with non-classical conditions

Parabolic equations with nonlocal boundary conditions have been given considerable attention in recent years. In this paper new high-order algorithms for the linear diffusion–reaction problem are derived. The convergence of the new schemes is studied and numerical examples are given to show the effi...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Applied mathematics and computation Ročník 218; číslo 9; s. 5487 - 5495
Hlavní autoři: Martín-Vaquero, J., Queiruga-Dios, A., Encinas, A.H.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Inc 2012
Témata:
ISSN:0096-3003, 1873-5649
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Parabolic equations with nonlocal boundary conditions have been given considerable attention in recent years. In this paper new high-order algorithms for the linear diffusion–reaction problem are derived. The convergence of the new schemes is studied and numerical examples are given to show the efficiency of the new methods to solve linear and nonlinear diffusion–reaction equations with these non classical conditions.
Bibliografie:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0096-3003
1873-5649
DOI:10.1016/j.amc.2011.11.037