A new class of spectral conjugate gradient methods based on a modified secant equation for unconstrained optimization

Conjugate gradient methods have played a special role for solving large scale optimization problems due to the simplicity of their iteration, convergence properties and their low memory requirements. In this work, we propose a new class of spectral conjugate gradient methods which ensures sufficient...

Full description

Saved in:
Bibliographic Details
Published in:Journal of computational and applied mathematics Vol. 239; pp. 396 - 405
Main Authors: Livieris, Ioannis E., Pintelas, Panagiotis
Format: Journal Article
Language:English
Published: Elsevier B.V 01.02.2013
Subjects:
ISSN:0377-0427, 1879-1778
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Conjugate gradient methods have played a special role for solving large scale optimization problems due to the simplicity of their iteration, convergence properties and their low memory requirements. In this work, we propose a new class of spectral conjugate gradient methods which ensures sufficient descent independent of the accuracy of the line search. Moreover, an attractive property of our proposed methods is that they achieve a high-order accuracy in approximating the second order curvature information of the objective function by utilizing the modified secant condition proposed by Babaie-Kafaki et al. [S. Babaie-Kafaki, R. Ghanbari, N. Mahdavi-Amiri, Two new conjugate gradient methods based on modified secant equations, Journal of Computational and Applied Mathematics 234 (2010) 1374–1386]. Further, a global convergence result for general functions is established provided that the line search satisfies the Wolfe conditions. Our numerical experiments indicate that our proposed methods are preferable and in general superior to the classical conjugate gradient methods in terms of efficiency and robustness.
AbstractList Conjugate gradient methods have played a special role for solving large scale optimization problems due to the simplicity of their iteration, convergence properties and their low memory requirements. In this work, we propose a new class of spectral conjugate gradient methods which ensures sufficient descent independent of the accuracy of the line search. Moreover, an attractive property of our proposed methods is that they achieve a high-order accuracy in approximating the second order curvature information of the objective function by utilizing the modified secant condition proposed by Babaie-Kafaki et al. [S. Babaie-Kafaki, R. Ghanbari, N. Mahdavi-Amiri, Two new conjugate gradient methods based on modified secant equations, Journal of Computational and Applied Mathematics 234 (2010) 1374–1386]. Further, a global convergence result for general functions is established provided that the line search satisfies the Wolfe conditions. Our numerical experiments indicate that our proposed methods are preferable and in general superior to the classical conjugate gradient methods in terms of efficiency and robustness.
Conjugate gradient methods have played a special role for solving large scale optimization problems due to the simplicity of their iteration, convergence properties and their low memory requirements. In this work, we propose a new class of spectral conjugate gradient methods which ensures sufficient descent independent of the accuracy of the line search. Moreover, an attractive property of our proposed methods is that they achieve a high-order accuracy in approximating the second order curvature information of the objective function by utilizing the modified secant condition proposed by Babaie-Kafaki et al. [S. Babaie-Kafaki, R. Ghanbari, N. Mahdavi-Amiri, Two new conjugate gradient methods based on modified secant equations, Journal of Computational and Applied Mathematics 234 (2010) 1374-1386]. Further, a global convergence result for general functions is established provided that the line search satisfies the Wolfe conditions. Our numerical experiments indicate that our proposed methods are preferable and in general superior to the classical conjugate gradient methods in terms of efficiency and robustness.
Author Livieris, Ioannis E.
Pintelas, Panagiotis
Author_xml – sequence: 1
  givenname: Ioannis E.
  surname: Livieris
  fullname: Livieris, Ioannis E.
  email: livieris@gmail.gr, livieris@upatras.gr
– sequence: 2
  givenname: Panagiotis
  surname: Pintelas
  fullname: Pintelas, Panagiotis
BookMark eNp9kUFv3CAQhVGVSN1s8wNy49iL3cE4YKunKGrTSpFyac9oFoaElQ0bsFu1v75stqccchqhee9p3scFO4spEmNXAloBQn3atxbntgPRtTC2APod24hBj43QejhjG5BaN9B3-j27KGUPAGoU_YatNzzSb24nLIUnz8uB7JJx4jbF_fqIC_HHjC5QXPhMy1Nyhe-wkOMpcuRzcsGH-ipksUroecUl1JVPma-xhpSaFuJRf1jCHP6-rD-wc49Tocv_c8t-fv3y4_Zbc_9w9_325r6xUsLSoBsARd8NVikJJBWMvZJe6872CsF7XdtJdOS8HxRqKXo_4k5eayAFu2u5ZR9PuYecnlcqi5lDsTRNGCmtxYiuEyN0UFO3TJ-kNqdSMnljw_Jy7LHAZASYI2izNxW0OYI2MJoKujrFK-chhxnznzc9n08equ1_Bcqm2MrYkgu5foBxKbzh_gcQPJnT
CitedBy_id crossref_primary_10_1007_s40863_022_00293_0
crossref_primary_10_1016_j_cam_2014_11_058
crossref_primary_10_1016_j_cam_2018_10_035
crossref_primary_10_1007_s40324_020_00228_9
crossref_primary_10_1007_s40995_020_01012_0
crossref_primary_10_1016_j_camwa_2020_10_021
crossref_primary_10_3390_a11090133
crossref_primary_10_1007_s11590_014_0820_0
crossref_primary_10_1007_s11590_015_0979_z
crossref_primary_10_1088_1757_899X_768_7_072044
crossref_primary_10_1155_2022_8939770
crossref_primary_10_1007_s11075_023_01729_0
crossref_primary_10_1186_s13660_020_02375_z
crossref_primary_10_1007_s10957_014_0601_z
crossref_primary_10_1016_j_apm_2021_10_016
crossref_primary_10_1007_s11075_017_0422_x
crossref_primary_10_1007_s11075_019_00836_1
Cites_doi 10.1080/10556780701223293
10.1016/S0377-0427(02)00420-X
10.1137/030601880
10.1093/comjnl/7.2.149
10.1080/10556780701661344
10.1093/imanum/8.1.141
10.1016/0377-0427(95)00178-6
10.1016/j.cam.2008.05.012
10.1016/0377-0427(94)90309-3
10.1007/s11075-011-9457-6
10.1093/imanum/drl016
10.1007/BF02614362
10.1007/s10589-007-9087-z
10.1016/j.cam.2010.01.052
10.1023/B:COAP.0000044184.25410.39
10.1007/BF01593790
10.1016/S0377-0427(00)00713-5
10.1016/j.cam.2006.03.005
10.1137/S1052623494266365
10.1023/A:1021898630001
10.1287/opre.26.6.1073
10.1007/s00211-006-0028-z
10.1007/s101070100263
10.6028/jres.049.044
10.1016/j.cam.2010.04.012
10.1016/j.cam.2005.06.033
10.1007/s00245-001-0003-0
10.1137/0802003
10.1007/s11590-008-0086-5
ContentType Journal Article
Copyright 2012 Elsevier B.V.
Copyright_xml – notice: 2012 Elsevier B.V.
DBID 6I.
AAFTH
AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1016/j.cam.2012.09.007
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1879-1778
EndPage 405
ExternalDocumentID 10_1016_j_cam_2012_09_007
S0377042712003718
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAFWJ
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABAOU
ABJNI
ABMAC
ABVKL
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AEXQZ
AFKWA
AFTJW
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
IHE
IXB
J1W
KOM
LG9
M26
M41
MHUIS
MO0
N9A
NCXOZ
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSW
SSZ
T5K
TN5
UPT
XPP
YQT
ZMT
~02
~G-
29K
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABEFU
ABFNM
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGHFR
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
D-I
EFKBS
EJD
FGOYB
G-2
HZ~
NHB
R2-
SEW
WUQ
ZY4
~HD
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c330t-ad80a1428c6630e3609463f772c46a0ff71773adedff86a7314f9ab3570e60b53
ISICitedReferencesCount 20
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000312475700028&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0377-0427
IngestDate Thu Oct 02 06:48:14 EDT 2025
Tue Nov 18 22:19:48 EST 2025
Sat Nov 29 06:38:57 EST 2025
Fri Feb 23 02:27:51 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Line search
Modified secant equation
Global convergence
Spectral conjugate gradient methods
Sufficient descent property
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
https://www.elsevier.com/tdm/userlicense/1.0
https://www.elsevier.com/open-access/userlicense/1.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c330t-ad80a1428c6630e3609463f772c46a0ff71773adedff86a7314f9ab3570e60b53
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
OpenAccessLink https://dx.doi.org/10.1016/j.cam.2012.09.007
PQID 1221902046
PQPubID 23500
PageCount 10
ParticipantIDs proquest_miscellaneous_1221902046
crossref_citationtrail_10_1016_j_cam_2012_09_007
crossref_primary_10_1016_j_cam_2012_09_007
elsevier_sciencedirect_doi_10_1016_j_cam_2012_09_007
PublicationCentury 2000
PublicationDate 2013-02-01
2013-02-00
20130201
PublicationDateYYYYMMDD 2013-02-01
PublicationDate_xml – month: 02
  year: 2013
  text: 2013-02-01
  day: 01
PublicationDecade 2010
PublicationTitle Journal of computational and applied mathematics
PublicationYear 2013
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Li, Tang, Wei (br000075) 2007; 202
Shi, Guo (br000170) 2009; 224
Shi, Shen (br000175) 2006; 193
Hager, Zhang (br000035) 2006; 2
Powell (br000155) 1977; 12
Hager, Zhang (br000100) 2005; 16
Dolan, Moré (br000115) 2002; 91
Zhang, Xu (br000125) 2001; 137
Raydan (br000145) 2007; 7
Ford, Narushima, Yabe (br000070) 2008; 40
Sun, Han, Sun (br000180) 2002; 146
Ford, Moghrabi (br000055) 1994; 50
Wei, Yu, Yuan, Lian (br000065) 2004; 29
Barzilai, Borwein (br000045) 1988; 8
Yu, Guan, Chen (br000105) 2008; 23
Birgin, Martínez (br000040) 1999; 43
Gilbert, Nocedal (br000140) 1992; 2
Babaie-Kafaki, Fatemi, Mahdavi-Amiri (br000080) 2011; 58
Han, Sun, Sun (br000165) 2002; 146
Fletcher, Reeves (br000010) 1964; 7
Babaie-Kafaki, Ghanbari, Mahdavi-Amiri (br000050) 2010; 234
Xiao, Wang, Wang (br000150) 2010; 234
Dai, Han, Liu, Sun, Yin, Yan (br000135) 1999; 2
G.H. Yu, Nonlinear self-scaling conjugate gradient methods for large-scale optimization problems, Ph.D. Thesis, Sun Yat-Sen University, 2007.
Perry (br000020) 1978; 26
Yuan (br000110) 2009; 3
Polak, Ribière (br000015) 1969; 16
Dai, Yuan (br000025) 2000
Ford, Moghrabi (br000060) 1996; 66
Zhang, Deng, Chen (br000120) 1999; 102
Hestenes, Stiefel (br000005) 1952; 49
Zhang, Zhou, Li (br000085) 2006; 104
Zhang, Zhou, Li (br000095) 2007; 22
Nocedal, Wright (br000030) 1999
Grippo, Lucidi (br000160) 1997; 78
Zhang, Zhou, Li (br000090) 2006; 26
10.1016/j.cam.2012.09.007_br000130
Dai (10.1016/j.cam.2012.09.007_br000135) 1999; 2
Polak (10.1016/j.cam.2012.09.007_br000015) 1969; 16
Ford (10.1016/j.cam.2012.09.007_br000060) 1996; 66
Grippo (10.1016/j.cam.2012.09.007_br000160) 1997; 78
Sun (10.1016/j.cam.2012.09.007_br000180) 2002; 146
Barzilai (10.1016/j.cam.2012.09.007_br000045) 1988; 8
Zhang (10.1016/j.cam.2012.09.007_br000085) 2006; 104
Gilbert (10.1016/j.cam.2012.09.007_br000140) 1992; 2
Xiao (10.1016/j.cam.2012.09.007_br000150) 2010; 234
Powell (10.1016/j.cam.2012.09.007_br000155) 1977; 12
Han (10.1016/j.cam.2012.09.007_br000165) 2002; 146
Birgin (10.1016/j.cam.2012.09.007_br000040) 1999; 43
Zhang (10.1016/j.cam.2012.09.007_br000120) 1999; 102
Yu (10.1016/j.cam.2012.09.007_br000105) 2008; 23
Wei (10.1016/j.cam.2012.09.007_br000065) 2004; 29
Shi (10.1016/j.cam.2012.09.007_br000170) 2009; 224
Shi (10.1016/j.cam.2012.09.007_br000175) 2006; 193
Perry (10.1016/j.cam.2012.09.007_br000020) 1978; 26
Li (10.1016/j.cam.2012.09.007_br000075) 2007; 202
Babaie-Kafaki (10.1016/j.cam.2012.09.007_br000080) 2011; 58
Nocedal (10.1016/j.cam.2012.09.007_br000030) 1999
Zhang (10.1016/j.cam.2012.09.007_br000095) 2007; 22
Ford (10.1016/j.cam.2012.09.007_br000070) 2008; 40
Zhang (10.1016/j.cam.2012.09.007_br000090) 2006; 26
Yuan (10.1016/j.cam.2012.09.007_br000110) 2009; 3
Zhang (10.1016/j.cam.2012.09.007_br000125) 2001; 137
Hager (10.1016/j.cam.2012.09.007_br000100) 2005; 16
Dolan (10.1016/j.cam.2012.09.007_br000115) 2002; 91
Fletcher (10.1016/j.cam.2012.09.007_br000010) 1964; 7
Hager (10.1016/j.cam.2012.09.007_br000035) 2006; 2
Hestenes (10.1016/j.cam.2012.09.007_br000005) 1952; 49
Dai (10.1016/j.cam.2012.09.007_br000025) 2000
Ford (10.1016/j.cam.2012.09.007_br000055) 1994; 50
Babaie-Kafaki (10.1016/j.cam.2012.09.007_br000050) 2010; 234
Raydan (10.1016/j.cam.2012.09.007_br000145) 2007; 7
References_xml – volume: 91
  start-page: 201
  year: 2002
  end-page: 213
  ident: br000115
  article-title: Benchmarking optimization software with performance profiles
  publication-title: Mathematical Programming
– volume: 26
  start-page: 629
  year: 2006
  end-page: 640
  ident: br000090
  article-title: A descent modified Polak–Ribière–Polyak conjugate gradient method and its global convergence
  publication-title: IMA Journal of Numerical Analysis
– volume: 234
  start-page: 2986
  year: 2010
  end-page: 2992
  ident: br000150
  article-title: Notes on the Dai–Yuan–Yuan modified spectral gradient method
  publication-title: Journal of Computational and Applied Mathematics
– volume: 146
  start-page: 89
  year: 2002
  end-page: 98
  ident: br000165
  article-title: Global convergence of non-monotone descent methods for unconstrained optimization problems
  publication-title: Journal of Computational and Applied Mathematics
– volume: 193
  start-page: 397
  year: 2006
  end-page: 412
  ident: br000175
  article-title: Convergence of nonmonotone line search method
  publication-title: Journal of Computational and Applied Mathematics
– volume: 78
  start-page: 375
  year: 1997
  end-page: 391
  ident: br000160
  article-title: A globally convergent version of the Polak–Ribière conjugate gradient method
  publication-title: Mathematical Programming
– volume: 234
  start-page: 1374
  year: 2010
  end-page: 1386
  ident: br000050
  article-title: Two new conjugate gradient methods based on modified secant equations
  publication-title: Journal of Computational and Applied Mathematics
– volume: 8
  start-page: 141
  year: 1988
  end-page: 148
  ident: br000045
  article-title: Two point step size gradient methods
  publication-title: IMA Journal of Numerical Analysis
– volume: 3
  start-page: 11
  year: 2009
  end-page: 21
  ident: br000110
  article-title: Modified nonlinear conjugate gradient methods with sufficient descent property for large-scale optimization problems
  publication-title: Optimization Letters
– volume: 16
  start-page: 170
  year: 2005
  end-page: 192
  ident: br000100
  article-title: A new conjugate gradient method with guaranteed descent and an efficient line search
  publication-title: SIAM of Journal Optimization
– volume: 26
  start-page: 1073
  year: 1978
  end-page: 1078
  ident: br000020
  article-title: A modified conjugate gradient algorithm
  publication-title: Operational Research
– volume: 202
  start-page: 523
  year: 2007
  end-page: 539
  ident: br000075
  article-title: New conjugacy condition and related new conjugate gradient methods for unconstrained optimization
  publication-title: Journal of Computational and Applied Mathematics
– volume: 137
  start-page: 269
  year: 2001
  end-page: 278
  ident: br000125
  article-title: Properties and numerical performance of quasi-Newton methods with modified quasi-Newton equations
  publication-title: Journal of Computational and Applied Mathematics
– year: 1999
  ident: br000030
  article-title: Numerical Optimization
– volume: 43
  start-page: 117
  year: 1999
  end-page: 128
  ident: br000040
  article-title: A spectral conjugate gradient method for unconstrained optimization
  publication-title: Applied Mathematics and Optimization
– volume: 58
  start-page: 315
  year: 2011
  end-page: 331
  ident: br000080
  article-title: Two effective hybrid conjugate gradient algorithms based on modified BFGS updates
  publication-title: Numerical Algorithms
– reference: G.H. Yu, Nonlinear self-scaling conjugate gradient methods for large-scale optimization problems, Ph.D. Thesis, Sun Yat-Sen University, 2007.
– volume: 16
  start-page: 35
  year: 1969
  end-page: 43
  ident: br000015
  article-title: Note sur la convergence de methods de directions conjuguees
  publication-title: Revue Francais d’Informatique et de Recherche Operationnelle
– volume: 12
  start-page: 241
  year: 1977
  end-page: 254
  ident: br000155
  article-title: Restart procedures for the conjugate gradient method
  publication-title: Mathematical Programming
– volume: 2
  start-page: 345
  year: 1999
  end-page: 358
  ident: br000135
  article-title: Convergence properties of nonlinear conjugate gradient methods
  publication-title: SIAM Journal of Optimization
– volume: 2
  start-page: 21
  year: 1992
  end-page: 42
  ident: br000140
  article-title: Global convergence properties of conjugate gradient methods for optimization
  publication-title: SIAM Journal of Optimization
– volume: 23
  start-page: 275
  year: 2008
  end-page: 293
  ident: br000105
  article-title: Spectral conjugate gradient methods with sufficient descent property for large-scale unconstrained optimization
  publication-title: Optimization Methods and Software
– volume: 50
  start-page: 305
  year: 1994
  end-page: 323
  ident: br000055
  article-title: Multi-step quasi-Newton methods for optimization
  publication-title: Journal of Computational and Applied Mathematics
– volume: 2
  start-page: 35
  year: 2006
  end-page: 58
  ident: br000035
  article-title: A survey of nonlinear conjugate gradient methods
  publication-title: Pacific of Journal Optimization
– volume: 40
  start-page: 191
  year: 2008
  end-page: 216
  ident: br000070
  article-title: Multi-step nonlinear conjugate gradient methods for unconstrained minimization
  publication-title: Computational Optimization and Applications
– volume: 7
  start-page: 149
  year: 1964
  end-page: 154
  ident: br000010
  article-title: Function minimization by conjugate gradients
  publication-title: Computer Journal
– volume: 146
  start-page: 89
  year: 2002
  end-page: 98
  ident: br000180
  article-title: Global convergence of nonmonotone descent methods for unconstrained optimization problems
  publication-title: Journal of Computational and Applied Mathematics
– volume: 66
  start-page: 201
  year: 1996
  end-page: 211
  ident: br000060
  article-title: Using function-values multi-step quasi-Newton methods
  publication-title: Journal of Computational and Applied Mathematics
– volume: 102
  start-page: 147
  year: 1999
  end-page: 167
  ident: br000120
  article-title: New quasi-Newton equation and related methods for unconstrained optimization
  publication-title: Journal of Optimization Theory and Applications
– volume: 29
  start-page: 315
  year: 2004
  end-page: 332
  ident: br000065
  article-title: The superlinear convergence of a modified BFGS-type method for unconstrained optimization
  publication-title: Computational Optimization and Applications
– volume: 224
  start-page: 444
  year: 2009
  end-page: 457
  ident: br000170
  article-title: A new family of conjugate gradient methods
  publication-title: Journal of Computational and Applied Mathematics
– volume: 22
  start-page: 697
  year: 2007
  end-page: 711
  ident: br000095
  article-title: Some descent three-term conjugate gradient methods and their global convergence
  publication-title: Optimization Methods and Software
– volume: 104
  start-page: 561
  year: 2006
  end-page: 572
  ident: br000085
  article-title: Global convergence of a modified Fletcher–Reeves conjugate gradient method with Armijo-type line search
  publication-title: Numerische Mathematik
– volume: 7
  start-page: 26
  year: 2007
  end-page: 33
  ident: br000145
  article-title: The Barzilai and Borwein gradient method for the large scale unconstrained minimization problem
  publication-title: SIAM Journal of Optimization
– year: 2000
  ident: br000025
  article-title: Nonlinear Conjugate Gradient Methods
– volume: 49
  start-page: 409
  year: 1952
  end-page: 436
  ident: br000005
  article-title: Methods for conjugate gradients for solving linear systems
  publication-title: Journal of Research of the National Bureau of Standards
– volume: 22
  start-page: 697
  year: 2007
  ident: 10.1016/j.cam.2012.09.007_br000095
  article-title: Some descent three-term conjugate gradient methods and their global convergence
  publication-title: Optimization Methods and Software
  doi: 10.1080/10556780701223293
– volume: 146
  start-page: 89
  issue: 2
  year: 2002
  ident: 10.1016/j.cam.2012.09.007_br000180
  article-title: Global convergence of nonmonotone descent methods for unconstrained optimization problems
  publication-title: Journal of Computational and Applied Mathematics
  doi: 10.1016/S0377-0427(02)00420-X
– year: 2000
  ident: 10.1016/j.cam.2012.09.007_br000025
– volume: 16
  start-page: 170
  year: 2005
  ident: 10.1016/j.cam.2012.09.007_br000100
  article-title: A new conjugate gradient method with guaranteed descent and an efficient line search
  publication-title: SIAM of Journal Optimization
  doi: 10.1137/030601880
– volume: 7
  start-page: 149
  year: 1964
  ident: 10.1016/j.cam.2012.09.007_br000010
  article-title: Function minimization by conjugate gradients
  publication-title: Computer Journal
  doi: 10.1093/comjnl/7.2.149
– volume: 23
  start-page: 275
  issue: 2
  year: 2008
  ident: 10.1016/j.cam.2012.09.007_br000105
  article-title: Spectral conjugate gradient methods with sufficient descent property for large-scale unconstrained optimization
  publication-title: Optimization Methods and Software
  doi: 10.1080/10556780701661344
– volume: 8
  start-page: 141
  year: 1988
  ident: 10.1016/j.cam.2012.09.007_br000045
  article-title: Two point step size gradient methods
  publication-title: IMA Journal of Numerical Analysis
  doi: 10.1093/imanum/8.1.141
– volume: 66
  start-page: 201
  year: 1996
  ident: 10.1016/j.cam.2012.09.007_br000060
  article-title: Using function-values multi-step quasi-Newton methods
  publication-title: Journal of Computational and Applied Mathematics
  doi: 10.1016/0377-0427(95)00178-6
– volume: 224
  start-page: 444
  issue: 1
  year: 2009
  ident: 10.1016/j.cam.2012.09.007_br000170
  article-title: A new family of conjugate gradient methods
  publication-title: Journal of Computational and Applied Mathematics
  doi: 10.1016/j.cam.2008.05.012
– volume: 50
  start-page: 305
  year: 1994
  ident: 10.1016/j.cam.2012.09.007_br000055
  article-title: Multi-step quasi-Newton methods for optimization
  publication-title: Journal of Computational and Applied Mathematics
  doi: 10.1016/0377-0427(94)90309-3
– volume: 16
  start-page: 35
  year: 1969
  ident: 10.1016/j.cam.2012.09.007_br000015
  article-title: Note sur la convergence de methods de directions conjuguees
  publication-title: Revue Francais d’Informatique et de Recherche Operationnelle
– volume: 58
  start-page: 315
  issue: 3
  year: 2011
  ident: 10.1016/j.cam.2012.09.007_br000080
  article-title: Two effective hybrid conjugate gradient algorithms based on modified BFGS updates
  publication-title: Numerical Algorithms
  doi: 10.1007/s11075-011-9457-6
– volume: 26
  start-page: 629
  issue: 4
  year: 2006
  ident: 10.1016/j.cam.2012.09.007_br000090
  article-title: A descent modified Polak–Ribière–Polyak conjugate gradient method and its global convergence
  publication-title: IMA Journal of Numerical Analysis
  doi: 10.1093/imanum/drl016
– volume: 78
  start-page: 375
  issue: 3
  year: 1997
  ident: 10.1016/j.cam.2012.09.007_br000160
  article-title: A globally convergent version of the Polak–Ribière conjugate gradient method
  publication-title: Mathematical Programming
  doi: 10.1007/BF02614362
– volume: 40
  start-page: 191
  year: 2008
  ident: 10.1016/j.cam.2012.09.007_br000070
  article-title: Multi-step nonlinear conjugate gradient methods for unconstrained minimization
  publication-title: Computational Optimization and Applications
  doi: 10.1007/s10589-007-9087-z
– volume: 234
  start-page: 1374
  year: 2010
  ident: 10.1016/j.cam.2012.09.007_br000050
  article-title: Two new conjugate gradient methods based on modified secant equations
  publication-title: Journal of Computational and Applied Mathematics
  doi: 10.1016/j.cam.2010.01.052
– volume: 2
  start-page: 35
  year: 2006
  ident: 10.1016/j.cam.2012.09.007_br000035
  article-title: A survey of nonlinear conjugate gradient methods
  publication-title: Pacific of Journal Optimization
– year: 1999
  ident: 10.1016/j.cam.2012.09.007_br000030
– volume: 29
  start-page: 315
  year: 2004
  ident: 10.1016/j.cam.2012.09.007_br000065
  article-title: The superlinear convergence of a modified BFGS-type method for unconstrained optimization
  publication-title: Computational Optimization and Applications
  doi: 10.1023/B:COAP.0000044184.25410.39
– volume: 12
  start-page: 241
  year: 1977
  ident: 10.1016/j.cam.2012.09.007_br000155
  article-title: Restart procedures for the conjugate gradient method
  publication-title: Mathematical Programming
  doi: 10.1007/BF01593790
– volume: 137
  start-page: 269
  year: 2001
  ident: 10.1016/j.cam.2012.09.007_br000125
  article-title: Properties and numerical performance of quasi-Newton methods with modified quasi-Newton equations
  publication-title: Journal of Computational and Applied Mathematics
  doi: 10.1016/S0377-0427(00)00713-5
– volume: 202
  start-page: 523
  year: 2007
  ident: 10.1016/j.cam.2012.09.007_br000075
  article-title: New conjugacy condition and related new conjugate gradient methods for unconstrained optimization
  publication-title: Journal of Computational and Applied Mathematics
  doi: 10.1016/j.cam.2006.03.005
– volume: 7
  start-page: 26
  year: 2007
  ident: 10.1016/j.cam.2012.09.007_br000145
  article-title: The Barzilai and Borwein gradient method for the large scale unconstrained minimization problem
  publication-title: SIAM Journal of Optimization
  doi: 10.1137/S1052623494266365
– ident: 10.1016/j.cam.2012.09.007_br000130
– volume: 102
  start-page: 147
  year: 1999
  ident: 10.1016/j.cam.2012.09.007_br000120
  article-title: New quasi-Newton equation and related methods for unconstrained optimization
  publication-title: Journal of Optimization Theory and Applications
  doi: 10.1023/A:1021898630001
– volume: 2
  start-page: 345
  year: 1999
  ident: 10.1016/j.cam.2012.09.007_br000135
  article-title: Convergence properties of nonlinear conjugate gradient methods
  publication-title: SIAM Journal of Optimization
– volume: 146
  start-page: 89
  year: 2002
  ident: 10.1016/j.cam.2012.09.007_br000165
  article-title: Global convergence of non-monotone descent methods for unconstrained optimization problems
  publication-title: Journal of Computational and Applied Mathematics
  doi: 10.1016/S0377-0427(02)00420-X
– volume: 26
  start-page: 1073
  year: 1978
  ident: 10.1016/j.cam.2012.09.007_br000020
  article-title: A modified conjugate gradient algorithm
  publication-title: Operational Research
  doi: 10.1287/opre.26.6.1073
– volume: 104
  start-page: 561
  year: 2006
  ident: 10.1016/j.cam.2012.09.007_br000085
  article-title: Global convergence of a modified Fletcher–Reeves conjugate gradient method with Armijo-type line search
  publication-title: Numerische Mathematik
  doi: 10.1007/s00211-006-0028-z
– volume: 91
  start-page: 201
  year: 2002
  ident: 10.1016/j.cam.2012.09.007_br000115
  article-title: Benchmarking optimization software with performance profiles
  publication-title: Mathematical Programming
  doi: 10.1007/s101070100263
– volume: 49
  start-page: 409
  year: 1952
  ident: 10.1016/j.cam.2012.09.007_br000005
  article-title: Methods for conjugate gradients for solving linear systems
  publication-title: Journal of Research of the National Bureau of Standards
  doi: 10.6028/jres.049.044
– volume: 234
  start-page: 2986
  issue: 10
  year: 2010
  ident: 10.1016/j.cam.2012.09.007_br000150
  article-title: Notes on the Dai–Yuan–Yuan modified spectral gradient method
  publication-title: Journal of Computational and Applied Mathematics
  doi: 10.1016/j.cam.2010.04.012
– volume: 193
  start-page: 397
  issue: 2
  year: 2006
  ident: 10.1016/j.cam.2012.09.007_br000175
  article-title: Convergence of nonmonotone line search method
  publication-title: Journal of Computational and Applied Mathematics
  doi: 10.1016/j.cam.2005.06.033
– volume: 43
  start-page: 117
  year: 1999
  ident: 10.1016/j.cam.2012.09.007_br000040
  article-title: A spectral conjugate gradient method for unconstrained optimization
  publication-title: Applied Mathematics and Optimization
  doi: 10.1007/s00245-001-0003-0
– volume: 2
  start-page: 21
  issue: 1
  year: 1992
  ident: 10.1016/j.cam.2012.09.007_br000140
  article-title: Global convergence properties of conjugate gradient methods for optimization
  publication-title: SIAM Journal of Optimization
  doi: 10.1137/0802003
– volume: 3
  start-page: 11
  year: 2009
  ident: 10.1016/j.cam.2012.09.007_br000110
  article-title: Modified nonlinear conjugate gradient methods with sufficient descent property for large-scale optimization problems
  publication-title: Optimization Letters
  doi: 10.1007/s11590-008-0086-5
SSID ssj0006914
Score 2.168656
Snippet Conjugate gradient methods have played a special role for solving large scale optimization problems due to the simplicity of their iteration, convergence...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 396
SubjectTerms Computation
Conjugate gradient method
Convergence
Curvature
Global convergence
Line search
Mathematical analysis
Mathematical models
Modified secant equation
Optimization
Searching
Spectral conjugate gradient methods
Sufficient descent property
Title A new class of spectral conjugate gradient methods based on a modified secant equation for unconstrained optimization
URI https://dx.doi.org/10.1016/j.cam.2012.09.007
https://www.proquest.com/docview/1221902046
Volume 239
WOSCitedRecordID wos000312475700028&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-1778
  dateEnd: 20180131
  omitProxy: false
  ssIdentifier: ssj0006914
  issn: 0377-0427
  databaseCode: AIEXJ
  dateStart: 19950220
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9swFBZZuoftYezKuhsa7GnBQ7FlyXoMI2MdWxmsg7wZRZZHQmp3uZT-mP7YnqOL07S0bIO9mGBsR-h81vkk63wfIe9kapnmRiS8MjLhUleJMjaFgzA1Z5WcSm82IQ8Pi8lEfe_1zmMtzOlCNk1xdqZO_muo4RwEG0tn_yLc3UPhBPyGoMMRwg7HPwr8CF3CBwZZMTJBV0q5dCogzXyDi2aDX0u3z2sd7KNXA0xlFX420OiMM6uRlq4sdvrA_t5styNCDkQ6ia4SeD2MNsehjPMGjmucZ0Rcb3S6sIH1HndysR2p_zrDHO01Dw5a9FJaDcYfurEbhS0WOvgKoLlSu57tLFqggcTOBpDr1TS-gkvKBL0_fG7yA3IhVTKU3uYnjtip1z8KY26mxKX0zV0V9_XM4Bcp5jDrR_0BXAFGoVK5TYPd5sQf2A5sxjB1gobFHbKXylwVfbI3OhhPvnSZXiivHR_bHb-au_2DV_7oJt5zhQE4WnP0kDwIsaIjj6NHpGebx-T-t210npDNiAKiqEMUbWsaEUU7RNGIKBoQRR2iaNtQTSOiqEcUjYiigCi6gyh6GVFPyc9P46OPn5Pg1pGYLGPrRFcF06jfZ4DEMpsJprjIapi9GS40q2sJYcx0Zau6LoSW2ZDXSk-zXDIr2DTPnpF-0zb2OaEwhxY6h8lsnVe8sgIo83RaFLlNFS8Uq_cJi31ZmiBljy1dlHHP4ryE7i-x-0umSuj-ffK-u-XE67jcdjGPASoDEfUEswQ03Xbb2xjMEgZp_PKmG9tuVuUwBWKAZejixb89-iW5t32NXpH-ermxr8ldcwpv2vJNwOUFgvC9OQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+new+class+of+spectral+conjugate+gradient+methods+based+on+a+modified+secant+equation+for+unconstrained+optimization&rft.jtitle=Journal+of+computational+and+applied+mathematics&rft.au=Livieris%2C+Ioannis+E.&rft.au=Pintelas%2C+Panagiotis&rft.date=2013-02-01&rft.pub=Elsevier+B.V&rft.issn=0377-0427&rft.eissn=1879-1778&rft.volume=239&rft.spage=396&rft.epage=405&rft_id=info:doi/10.1016%2Fj.cam.2012.09.007&rft.externalDocID=S0377042712003718
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0377-0427&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0377-0427&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0377-0427&client=summon