On the Analytic Continuation of Lauricella–Saran Hypergeometric Function FK(a1,a2,b1,b2;a1,b2,c3;z)

The paper establishes an analytical extension of two ratios of Lauricella–Saran hypergeometric functions FK with some parameter values to the corresponding branched continued fractions in their domain of convergence. The PC method used here is based on the correspondence between a formal triple powe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics (Basel) Jg. 11; H. 21; S. 4487
Hauptverfasser: Antonova, Tamara, Dmytryshyn, Roman, Goran, Vitaliy
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Basel MDPI AG 01.11.2023
Schlagworte:
ISSN:2227-7390, 2227-7390
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The paper establishes an analytical extension of two ratios of Lauricella–Saran hypergeometric functions FK with some parameter values to the corresponding branched continued fractions in their domain of convergence. The PC method used here is based on the correspondence between a formal triple power series and a branched continued fraction. As additional results, analytical extensions of the Lauricella–Saran hypergeometric functions FK(a1,a2,1,b2;a1,b2,c3;z) and FK(a1,1,b1,b2;a1,b2,c3;z) to the corresponding branched continued fractions were obtained. To illustrate this, we provide some numerical experiments at the end.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2227-7390
2227-7390
DOI:10.3390/math11214487