Nonlocal symmetries and new interaction waves of the variable-coefficient modified Korteweg–de Vries equation in fluid-filled elastic tubes

The Lax pair is developed to construct nonlocal symmetries of the variable-coefficient modified Korteweg–de Vries (vc-mKdV) equation in fluid-filled elastic tubes. To construct new exact solutions with the nonlocal symmetry, we use the localization approach, which can transform the problem of nonloc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European physical journal plus Jg. 137; H. 7; S. 814
Hauptverfasser: Wu, Jian-Wen, He, Jun-Tao, Lin, Ji
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 01.07.2022
Springer Nature B.V
Schlagworte:
ISSN:2190-5444, 2190-5444
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The Lax pair is developed to construct nonlocal symmetries of the variable-coefficient modified Korteweg–de Vries (vc-mKdV) equation in fluid-filled elastic tubes. To construct new exact solutions with the nonlocal symmetry, we use the localization approach, which can transform the problem of nonlocal symmetries to Lie point symmmetries. Furthermore, using the classic Lie group reduction method some group invariant solutions of the vc-mKdV equation are obtained. For some interesting solutions, the soliton-cnoidal waves are discussed through the graphical analysis.
AbstractList The Lax pair is developed to construct nonlocal symmetries of the variable-coefficient modified Korteweg–de Vries (vc-mKdV) equation in fluid-filled elastic tubes. To construct new exact solutions with the nonlocal symmetry, we use the localization approach, which can transform the problem of nonlocal symmetries to Lie point symmmetries. Furthermore, using the classic Lie group reduction method some group invariant solutions of the vc-mKdV equation are obtained. For some interesting solutions, the soliton-cnoidal waves are discussed through the graphical analysis.
ArticleNumber 814
Author Wu, Jian-Wen
Lin, Ji
He, Jun-Tao
Author_xml – sequence: 1
  givenname: Jian-Wen
  orcidid: 0000-0001-7014-6660
  surname: Wu
  fullname: Wu, Jian-Wen
  organization: Department of Physics, Zhejiang Normal University
– sequence: 2
  givenname: Jun-Tao
  surname: He
  fullname: He, Jun-Tao
  organization: Department of Physics, Zhejiang Normal University
– sequence: 3
  givenname: Ji
  surname: Lin
  fullname: Lin, Ji
  email: linji@zjnu.edu.cn
  organization: Department of Physics, Zhejiang Normal University
BookMark eNqNkc9OXCEUh0ljk9rRZyiJaypc7r1zWXTRGP9FoxvbLeHCwTJhYASuE3d9ga58Q59EnDGp6caygYTz_Q6H7zPaCTEAQl8Y_cpYSw9htVgdZsZ5TwltGkI55ZzMP6DdhglKurZtd96cP6H9nBe0rlawVrS76M9VDD5q5XF-WC6hJAcZq2BwgDV2oUBSurgY8Frd15tocfkF-F4lp0YPREew1mkHoeBlNM46MPgipgJruH36_WgA_9xEwt2kNjkuYOsnZ4h13tdi8CoXp3GZRsh76KNVPsP-6z5DP06Ob47OyOX16fnR90uiOaeFDFYYMLqHVmih68xs1IzPtWhMx5lRuuesYaD6cRygswyYEY0w_QBjN5gO-AwdbHNXKd5NkItcxCmF2lI2oqGs71j9yBn6tq3SKeacwErtymaKkpTzklH5IkG-SJBbCbJKkBsJcl75-T_8KrmlSg__QQ5bMlci3EL6-7730Gd2sKYi
CitedBy_id crossref_primary_10_1016_j_wavemoti_2022_103110
crossref_primary_10_1140_epjp_s13360_025_06302_3
crossref_primary_10_1007_s10773_025_06054_x
crossref_primary_10_1007_s11071_024_09779_2
crossref_primary_10_1016_j_chaos_2022_112657
crossref_primary_10_1007_s11071_023_09192_1
crossref_primary_10_1155_2022_4324648
crossref_primary_10_3390_pr11092769
crossref_primary_10_1155_2022_3221447
crossref_primary_10_1088_1402_4896_acbcfc
crossref_primary_10_1088_1572_9494_adc7e2
crossref_primary_10_7566_JPSJ_92_084003
Cites_doi 10.1016/j.camwa.2018.07.018
10.1103/PhysRevE.84.026606
10.1016/j.matcom.2010.02.001
10.1002/mma.2561
10.1016/j.cam.2005.10.043
10.1088/0031-8949/89/12/125203
10.1016/j.aml.2020.107004
10.1088/0256-307X/31/1/010201
10.1016/S0020-7225(03)00284-2
10.1088/1402-4896/ab8d02
10.1016/j.joes.2021.09.003
10.1007/s11071-018-4051-2
10.1016/j.cnsns.2010.07.021
10.1103/PhysRevE.85.056607
10.1515/phys-2018-0073
10.1016/j.aml.2018.08.023
10.1007/s40840-018-0668-z
10.1515/zna-2016-0078
10.1017/CBO9780511623998
10.1364/OE.20.007469
10.1007/s11071-017-3475-4
10.1016/j.jmmm.2020.166590
10.1088/1751-8113/45/15/155209
10.1016/j.aop.2008.04.012
10.1088/0305-4470/39/20/L08
10.1088/0305-4470/24/10/003
10.1088/0253-6102/70/2/119
10.1016/j.wavemoti.2021.102719
10.1007/s11071-016-2998-4
10.1143/JPSJ.50.338
10.1088/1402-4896/aacd42
10.1016/j.wavemoti.2014.07.012
10.1007/978-0-387-68028-6
10.1088/0305-4470/30/5/004
10.1016/j.wavemoti.2018.08.008
10.1016/j.aml.2020.106326
10.1103/PhysRevE.77.036605
10.1088/1572-9494/abf552
10.1016/j.aml.2019.02.028
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2022
The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2022.
Copyright_xml – notice: The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2022
– notice: The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2022.
DBID AAYXX
CITATION
8FE
8FG
AEUYN
AFKRA
ARAPS
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
DWQXO
HCIFZ
P5Z
P62
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.1140/epjp/s13360-022-03033-7
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Advanced Technologies & Aerospace Collection
Database_xml – sequence: 1
  dbid: P5Z
  name: Advanced Technologies & Aerospace Database
  url: https://search.proquest.com/hightechjournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2190-5444
ExternalDocumentID 10_1140_epjp_s13360_022_03033_7
GrantInformation_xml – fundername: Natural Science Foundation of Zhejiang Province
  grantid: LZ22A050002
  funderid: http://dx.doi.org/10.13039/501100004731
– fundername: National Natural Science Foundation of China
  grantid: 11835011; 12074343
  funderid: http://dx.doi.org/10.13039/501100001809
GroupedDBID -5F
-5G
-BR
-EM
-~C
06D
0R~
203
29~
2JN
2KG
30V
4.4
406
408
8UJ
95.
96X
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
AAZMS
ABAKF
ABDZT
ABECU
ABFTV
ABHLI
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACKNC
ACMDZ
ACMLO
ACOKC
ACPIV
ACREN
ACZOJ
ADHHG
ADINQ
ADKNI
ADKPE
ADURQ
ADYFF
ADZKW
AEFQL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETCA
AEUYN
AEVLU
AEXYK
AFBBN
AFKRA
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJRNO
AJZVZ
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
AOCGG
ARAPS
ARMRJ
AXYYD
AYJHY
BENPR
BGLVJ
BGNMA
BHPHI
BKSAR
CCPQU
CSCUP
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
ESBYG
FERAY
FFXSO
FIGPU
FNLPD
FRRFC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
HCIFZ
HMJXF
HRMNR
HZ~
I0C
IKXTQ
IWAJR
IXD
J-C
JBSCW
JZLTJ
KOV
LLZTM
M4Y
NPVJJ
NQJWS
NU0
O93
O9J
P9T
PCBAR
PT4
RID
RLLFE
ROL
RSV
S27
S3B
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPH
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
Z7S
Z7Y
ZMTXR
~A9
2VQ
AAAVM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADQRH
AEBTG
AEKMD
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGJBK
AHPBZ
AHSBF
AHWEU
AIXLP
AJBLW
ATHPR
AYFIA
CITATION
EJD
FINBP
FSGXE
O9-
PHGZM
PHGZT
PQGLB
S1Z
8FE
8FG
DWQXO
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c330t-8f9dedc6e49c9c0301bc137c92d531dac63121ea6bb8e5f1e1d929d68eb58d5e3
IEDL.DBID RSV
ISICitedReferencesCount 16
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000825413200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2190-5444
IngestDate Wed Nov 05 08:35:48 EST 2025
Sat Nov 29 03:58:22 EST 2025
Tue Nov 18 22:12:58 EST 2025
Fri Feb 21 02:45:33 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c330t-8f9dedc6e49c9c0301bc137c92d531dac63121ea6bb8e5f1e1d929d68eb58d5e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7014-6660
PQID 2920165130
PQPubID 2044220
ParticipantIDs proquest_journals_2920165130
crossref_citationtrail_10_1140_epjp_s13360_022_03033_7
crossref_primary_10_1140_epjp_s13360_022_03033_7
springer_journals_10_1140_epjp_s13360_022_03033_7
PublicationCentury 2000
PublicationDate 20220701
PublicationDateYYYYMMDD 2022-07-01
PublicationDate_xml – month: 07
  year: 2022
  text: 20220701
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle European physical journal plus
PublicationTitleAbbrev Eur. Phys. J. Plus
PublicationYear 2022
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Lie. S, Vorlesungen über Differentialgleichungen Mit Bekannten Infinitesimalen Transformationen (Teuber: Leipzig 1891) (Reprinted by Chelsea, New York USA 1967)
LiuXZYuJLouZMNew Bäcklund transformations of the (2+1)-dimensional Bogoyavlenskii equation via localization of residual symmetriesComput. Math. Appl.2018761669167938526151434.3516310.1016/j.camwa.2018.07.018
TrikiHTahaTRWazwazAMSolitary wave solutions for a generalized KdV-mKdV equation with variable coefficientsMath. Comput. Simulat.2010801867187326585191346.3518410.1016/j.matcom.2010.02.001
GaiXLGaoYTWangLMengDXLüXSunZYYuXPainleve´\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\acute{e}$$\end{document} property, Lax pair and Darboux transformation of the variable-coefficient modified Kortweg-de Vries model in fluid-filled elastic tubesCommun. Nolinear Sci.201116177617821221.3533410.1016/j.cnsns.2010.07.021
JiaJLinJSolitons in nonlocal nonlinear kerr media with exponential response functionOpt. Express201220746974792012OExpr..20.7469J10.1364/OE.20.007469
LinJRenBLiHMLiYSSoliton solutions for two nonlinear partial differential equations using a Darboux transformation of the Lax pairsPhys. Rev. E2008772008PhRvE..77c6605L249545010.1103/PhysRevE.77.036605
LiYQChenJCChenYLouSYDarboux transformations via Lie point symmetries: KdV equationChin. Phys. Lett.2014312014ChPhL..31a0201L10.1088/0256-307X/31/1/010201
BlumanGWCheviakovAFAncoSCApplications of Symmetry Methods to Partial Differential Equations2010New YorkSpringer1223.3500110.1007/978-0-387-68028-6
DemirayHWaves in fluid-filled elastic tubes with a stenosis: variable coefficients KdV equationsJ. Comput. Appl. Math.20072023283382007JCoAm.202..328D23199601359.7634910.1016/j.cam.2005.10.043
BlumanGWSymmetry and Integration Methods for Differential Equations2002New YorkSpringer1013.34004
HirotaRItoMA direct approach to multi-periodic wave solutions to nonlinear evolution equationsJ. Phys. Soc. Jpn.1981503383421981JPSJ...50..338H10.1143/JPSJ.50.338
ZhangXXWuZSSuXElectromagnetic scattering from deterministic sea surface with oceanic internal waves via the variable-coefficient Gardener modelIEEE J. Stars201811355366
WangJYZengYLiangZFXuYNZhangYXIon acoustic quasi-soliton in an electron-positron-ion plasma with superthermal electrons and positronsOpen Phys.20181656356710.1515/phys-2018-0073
WangYHWangHSymmetry analysis and CTE solvability for the (2+1)-dimensional Boiti-Leon-Pempinelli equationPhys. Scr.2014892014PhyS...89l5203W10.1088/0031-8949/89/12/125203
LiuXZYuJLouZMResidual symmetry, CRE integrability and interaction solutions of the (3+1)-dimensional breaking soliton equationPhys. Scr.2018932018PhyS...93h5201L10.1088/1402-4896/aacd42
TrikiHWazwazAMSub-ODE method and soliton solutions for the variable-coefficient mKdV equationAppl. Math. Comput.200921437037325416721171.35467
RenBLinJSoliton molecules, nonlocal symmetry and CRE method of the KdV equation with higher-order correctionsPhys. Scr.2020952020PhyS...95g5202R10.1088/1402-4896/ab8d02
PradhanKPanigrahiPKParametrically controlling solitary wave dynamics in the modified Korteweg–de Vries equationJ. Phys. A: Math. Gen.200639L3433482006JPhA...39L.343P22381061099.3512010.1088/0305-4470/39/20/L08
El-ShiekhRMGaballahMNew analytical solitary and periodic wave solutions for generalized variable-coefficients modified KdV equation with external-force term presenting atmospheric blocking in oceansJ. Ocean Eng. Sci.202110.1016/j.joes.2021.09.003
RenBChengXPLinJThe (2+1)-dimensional Konopelchenko-Dubrovsky equation: nonlocal symmetries and interaction solutionsNonlinear Dyn.2016861855186235624561371.3500410.1007/s11071-016-2998-4
LouSYHuXBNon-local symmetries via Darboux transformationsJ. Phys. A: Math. Gen.199730L9510014499871001.3550110.1088/0305-4470/30/5/004
JinXWLinJRogue wave, interaction solutions to the KMM systemJ. Magn. Magn. Mater.202050210.1016/j.jmmm.2020.166590
WuJWCaiYJLinJLocalization of nonlocal symmetries and interaction solutions of the Sawada-Kotera equationCommun. Theor. Phys.2021732021CoTPh..73f5002W426899510.1088/1572-9494/abf552
XinXPLiuHZZhangLLWangZGHigh order nonlocal symmetries and exact interaction solutions of the variable coefficient KdV equationAppl. Math. Lett.20198813214038627231407.3501310.1016/j.aml.2018.08.023
LouSYHuXRChenYNonlocal symmetries related to Bäcklund transformation and their applicationsJ. Phys. A-Math. Theor.2012452012JPhA...45o5209L1248.3706910.1088/1751-8113/45/15/155209
ZhangYLiJBLüYNThe exact solution and integrable properties to the variable-coefficient modified Korteweg–de Vries equationAnn. Phys.-New York2008323305930642008AnPhy.323.3059Z24670821161.3504610.1016/j.aop.2008.04.012
ChengXPYangYQRenBWangJYInteraction behavior between solitons and (2+1)-dimensional CDGKS wavesWave Motion20198615016139031450721542510.1016/j.wavemoti.2018.08.008
HuXRLouSYChenYExplicit solutions from eigenfunction symmetry of the Korteweg–de Vries equationPhys. Rev. E2012852012PhRvE..85e6607H10.1103/PhysRevE.85.056607
XinXPZhangLLXiaYRLiuHZNonlocal symmetries and exact solutions of the (2+1)-dimensional generalized variable coefficient shallow water wave equationAppl. Math. Lett.20199411211939222201412.3502010.1016/j.aml.2019.02.028
AblowitzMJClarksonPASolitons, nolinear evolution equations and inverse scattering1991EnglandCambridge University Press0762.3500110.1017/CBO9780511623998
RenBLinJLouZMConsistent Riccati expansion and rational solutions of the Drinfel’d-Sokolov-Wilson equationAppl. Math. Lett.202010540762661436.3507010.1016/j.aml.2020.106326
FengLLTianSFZhangTTBäcklund transformations, nonlocal symmetries and soliton-cnoidal interaction solutions of the (2+1)-dimensional Boussinesq equationB. Malays. Math. Sci. So.2020431411551435.3529610.1007/s40840-018-0668-z
DemirayHThe effect of a bump on wave propagation in a fluid-filled elastic tubeInt. J. Engng. Sci.20044220321520200921211.7616210.1016/S0020-7225(03)00284-2
El-ShiekhRMNew exact solutions for the variable coefficient modified KdV equation using direct reduction methodMath. Method Appl. Sci.2012361430083171257.3516310.1002/mma.2561
CaiYJWuJWHuLTLinJNondegenerate solitons for coupled higher-order nonlinear Schrödinger equations in optical fibers PhysScr.202196
MaWXYongXLLüXSoliton solutions to the B-type Kadomtsev-Petviashvili equation under general dispersion relationsWave Motion202110342284430742557310.1016/j.wavemoti.2021.102719
HuangLLChenYNonlocal symmetry and similarity reductions for a (2+1)-dimensional Korteweg–de Vries equationNonlinear Dyn.2018922212341398.3519710.1007/s11071-018-4051-2
SunZYGaoYTLiuYYuXSoliton management for a variable-coefficient modified Korteweg–de Vries equationPhys. Rev. E2011842011PhRvE..84b6606S10.1103/PhysRevE.84.026606
ZhangZQiZQLiBFusion and fission phenomena for (2+1)-dimensional fifth-order KdV systemAppl. Math. Lett.202111641972381466.3532010.1016/j.aml.2020.107004
ChengXPChenCLLouSYInteractions among different types of nonlinear waves described by the Kadomtsev-Petviashvili equationWave Motion2014511298130832685951456.3517710.1016/j.wavemoti.2014.07.012
LinJJinXWGaoXLLouSYSolitons on a periodic wave background of the modified KdV-sine-Gordon equationCommun. Theor. Phys.2018701191262018CoTPh..70..119L39529021451.3516810.1088/0253-6102/70/2/119
LouSYPseudopotentials, Lax pairs and Bäcklund transformations for some variable coefficient nonlinear equationJ. Phys. A: Math. Gen.199124L5135181991JPhA...24L.513L0742.3505910.1088/0305-4470/24/10/003
RenBLinJNonlocal symmetry and its applications in perturbed mKdV equationZ. Naturforsch A2016715575642016ZNatA..71..557R10.1515/zna-2016-0078
PalRKaurHRajuTSKumarCNPeriodic and rational solutions of variable-coefficient modified Korteweg–de Vries equationNonlinear Dyn.201789617622366371510.1007/s11071-017-3475-4
JW Wu (3033_CR19) 2021; 73
XZ Liu (3033_CR24) 2018; 76
YH Wang (3033_CR6) 2014; 89
Y Zhang (3033_CR34) 2008; 323
JY Wang (3033_CR8) 2018; 16
3033_CR12
SY Lou (3033_CR42) 1991; 24
K Pradhan (3033_CR43) 2006; 39
MJ Ablowitz (3033_CR1) 1991
XR Hu (3033_CR20) 2012; 85
XX Zhang (3033_CR31) 2018; 11
XP Cheng (3033_CR17) 2014; 51
WX Ma (3033_CR4) 2021; 103
H Triki (3033_CR30) 2010; 80
R Hirota (3033_CR2) 1981; 50
SY Lou (3033_CR40) 1997; 30
XP Xin (3033_CR26) 2019; 94
GW Bluman (3033_CR38) 2002
J Jia (3033_CR13) 2012; 20
RM El-Shiekh (3033_CR36) 2012; 36
B Ren (3033_CR23) 2016; 86
XP Xin (3033_CR25) 2019; 88
LL Feng (3033_CR14) 2020; 43
Z Zhang (3033_CR15) 2021; 116
XP Cheng (3033_CR41) 2019; 86
GW Bluman (3033_CR39) 2010
XW Jin (3033_CR7) 2020; 502
H Triki (3033_CR29) 2009; 214
J Lin (3033_CR5) 2008; 77
J Lin (3033_CR21) 2018; 70
XZ Liu (3033_CR9) 2018; 93
YQ Li (3033_CR22) 2014; 31
R Pal (3033_CR33) 2017; 89
B Ren (3033_CR10) 2020; 95
H Demiray (3033_CR28) 2007; 202
YJ Cai (3033_CR3) 2021; 96
ZY Sun (3033_CR35) 2011; 84
LL Huang (3033_CR18) 2018; 92
H Demiray (3033_CR27) 2004; 42
B Ren (3033_CR37) 2016; 71
SY Lou (3033_CR16) 2012; 45
B Ren (3033_CR11) 2020; 105
XL Gai (3033_CR32) 2011; 16
RM El-Shiekh (3033_CR44) 2021
References_xml – reference: ZhangYLiJBLüYNThe exact solution and integrable properties to the variable-coefficient modified Korteweg–de Vries equationAnn. Phys.-New York2008323305930642008AnPhy.323.3059Z24670821161.3504610.1016/j.aop.2008.04.012
– reference: LouSYPseudopotentials, Lax pairs and Bäcklund transformations for some variable coefficient nonlinear equationJ. Phys. A: Math. Gen.199124L5135181991JPhA...24L.513L0742.3505910.1088/0305-4470/24/10/003
– reference: LiuXZYuJLouZMResidual symmetry, CRE integrability and interaction solutions of the (3+1)-dimensional breaking soliton equationPhys. Scr.2018932018PhyS...93h5201L10.1088/1402-4896/aacd42
– reference: FengLLTianSFZhangTTBäcklund transformations, nonlocal symmetries and soliton-cnoidal interaction solutions of the (2+1)-dimensional Boussinesq equationB. Malays. Math. Sci. So.2020431411551435.3529610.1007/s40840-018-0668-z
– reference: JinXWLinJRogue wave, interaction solutions to the KMM systemJ. Magn. Magn. Mater.202050210.1016/j.jmmm.2020.166590
– reference: LouSYHuXRChenYNonlocal symmetries related to Bäcklund transformation and their applicationsJ. Phys. A-Math. Theor.2012452012JPhA...45o5209L1248.3706910.1088/1751-8113/45/15/155209
– reference: HuangLLChenYNonlocal symmetry and similarity reductions for a (2+1)-dimensional Korteweg–de Vries equationNonlinear Dyn.2018922212341398.3519710.1007/s11071-018-4051-2
– reference: RenBLinJSoliton molecules, nonlocal symmetry and CRE method of the KdV equation with higher-order correctionsPhys. Scr.2020952020PhyS...95g5202R10.1088/1402-4896/ab8d02
– reference: RenBLinJNonlocal symmetry and its applications in perturbed mKdV equationZ. Naturforsch A2016715575642016ZNatA..71..557R10.1515/zna-2016-0078
– reference: HirotaRItoMA direct approach to multi-periodic wave solutions to nonlinear evolution equationsJ. Phys. Soc. Jpn.1981503383421981JPSJ...50..338H10.1143/JPSJ.50.338
– reference: ZhangXXWuZSSuXElectromagnetic scattering from deterministic sea surface with oceanic internal waves via the variable-coefficient Gardener modelIEEE J. Stars201811355366
– reference: El-ShiekhRMNew exact solutions for the variable coefficient modified KdV equation using direct reduction methodMath. Method Appl. Sci.2012361430083171257.3516310.1002/mma.2561
– reference: LiuXZYuJLouZMNew Bäcklund transformations of the (2+1)-dimensional Bogoyavlenskii equation via localization of residual symmetriesComput. Math. Appl.2018761669167938526151434.3516310.1016/j.camwa.2018.07.018
– reference: ChengXPChenCLLouSYInteractions among different types of nonlinear waves described by the Kadomtsev-Petviashvili equationWave Motion2014511298130832685951456.3517710.1016/j.wavemoti.2014.07.012
– reference: ZhangZQiZQLiBFusion and fission phenomena for (2+1)-dimensional fifth-order KdV systemAppl. Math. Lett.202111641972381466.3532010.1016/j.aml.2020.107004
– reference: RenBChengXPLinJThe (2+1)-dimensional Konopelchenko-Dubrovsky equation: nonlocal symmetries and interaction solutionsNonlinear Dyn.2016861855186235624561371.3500410.1007/s11071-016-2998-4
– reference: JiaJLinJSolitons in nonlocal nonlinear kerr media with exponential response functionOpt. Express201220746974792012OExpr..20.7469J10.1364/OE.20.007469
– reference: BlumanGWCheviakovAFAncoSCApplications of Symmetry Methods to Partial Differential Equations2010New YorkSpringer1223.3500110.1007/978-0-387-68028-6
– reference: DemirayHThe effect of a bump on wave propagation in a fluid-filled elastic tubeInt. J. Engng. Sci.20044220321520200921211.7616210.1016/S0020-7225(03)00284-2
– reference: WuJWCaiYJLinJLocalization of nonlocal symmetries and interaction solutions of the Sawada-Kotera equationCommun. Theor. Phys.2021732021CoTPh..73f5002W426899510.1088/1572-9494/abf552
– reference: TrikiHWazwazAMSub-ODE method and soliton solutions for the variable-coefficient mKdV equationAppl. Math. Comput.200921437037325416721171.35467
– reference: LouSYHuXBNon-local symmetries via Darboux transformationsJ. Phys. A: Math. Gen.199730L9510014499871001.3550110.1088/0305-4470/30/5/004
– reference: LinJJinXWGaoXLLouSYSolitons on a periodic wave background of the modified KdV-sine-Gordon equationCommun. Theor. Phys.2018701191262018CoTPh..70..119L39529021451.3516810.1088/0253-6102/70/2/119
– reference: BlumanGWSymmetry and Integration Methods for Differential Equations2002New YorkSpringer1013.34004
– reference: HuXRLouSYChenYExplicit solutions from eigenfunction symmetry of the Korteweg–de Vries equationPhys. Rev. E2012852012PhRvE..85e6607H10.1103/PhysRevE.85.056607
– reference: Lie. S, Vorlesungen über Differentialgleichungen Mit Bekannten Infinitesimalen Transformationen (Teuber: Leipzig 1891) (Reprinted by Chelsea, New York USA 1967)
– reference: TrikiHTahaTRWazwazAMSolitary wave solutions for a generalized KdV-mKdV equation with variable coefficientsMath. Comput. Simulat.2010801867187326585191346.3518410.1016/j.matcom.2010.02.001
– reference: ChengXPYangYQRenBWangJYInteraction behavior between solitons and (2+1)-dimensional CDGKS wavesWave Motion20198615016139031450721542510.1016/j.wavemoti.2018.08.008
– reference: PradhanKPanigrahiPKParametrically controlling solitary wave dynamics in the modified Korteweg–de Vries equationJ. Phys. A: Math. Gen.200639L3433482006JPhA...39L.343P22381061099.3512010.1088/0305-4470/39/20/L08
– reference: SunZYGaoYTLiuYYuXSoliton management for a variable-coefficient modified Korteweg–de Vries equationPhys. Rev. E2011842011PhRvE..84b6606S10.1103/PhysRevE.84.026606
– reference: MaWXYongXLLüXSoliton solutions to the B-type Kadomtsev-Petviashvili equation under general dispersion relationsWave Motion202110342284430742557310.1016/j.wavemoti.2021.102719
– reference: El-ShiekhRMGaballahMNew analytical solitary and periodic wave solutions for generalized variable-coefficients modified KdV equation with external-force term presenting atmospheric blocking in oceansJ. Ocean Eng. Sci.202110.1016/j.joes.2021.09.003
– reference: WangYHWangHSymmetry analysis and CTE solvability for the (2+1)-dimensional Boiti-Leon-Pempinelli equationPhys. Scr.2014892014PhyS...89l5203W10.1088/0031-8949/89/12/125203
– reference: GaiXLGaoYTWangLMengDXLüXSunZYYuXPainleve´\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\acute{e}$$\end{document} property, Lax pair and Darboux transformation of the variable-coefficient modified Kortweg-de Vries model in fluid-filled elastic tubesCommun. Nolinear Sci.201116177617821221.3533410.1016/j.cnsns.2010.07.021
– reference: XinXPZhangLLXiaYRLiuHZNonlocal symmetries and exact solutions of the (2+1)-dimensional generalized variable coefficient shallow water wave equationAppl. Math. Lett.20199411211939222201412.3502010.1016/j.aml.2019.02.028
– reference: LinJRenBLiHMLiYSSoliton solutions for two nonlinear partial differential equations using a Darboux transformation of the Lax pairsPhys. Rev. E2008772008PhRvE..77c6605L249545010.1103/PhysRevE.77.036605
– reference: LiYQChenJCChenYLouSYDarboux transformations via Lie point symmetries: KdV equationChin. Phys. Lett.2014312014ChPhL..31a0201L10.1088/0256-307X/31/1/010201
– reference: WangJYZengYLiangZFXuYNZhangYXIon acoustic quasi-soliton in an electron-positron-ion plasma with superthermal electrons and positronsOpen Phys.20181656356710.1515/phys-2018-0073
– reference: DemirayHWaves in fluid-filled elastic tubes with a stenosis: variable coefficients KdV equationsJ. Comput. Appl. Math.20072023283382007JCoAm.202..328D23199601359.7634910.1016/j.cam.2005.10.043
– reference: RenBLinJLouZMConsistent Riccati expansion and rational solutions of the Drinfel’d-Sokolov-Wilson equationAppl. Math. Lett.202010540762661436.3507010.1016/j.aml.2020.106326
– reference: XinXPLiuHZZhangLLWangZGHigh order nonlocal symmetries and exact interaction solutions of the variable coefficient KdV equationAppl. Math. Lett.20198813214038627231407.3501310.1016/j.aml.2018.08.023
– reference: CaiYJWuJWHuLTLinJNondegenerate solitons for coupled higher-order nonlinear Schrödinger equations in optical fibers PhysScr.202196
– reference: AblowitzMJClarksonPASolitons, nolinear evolution equations and inverse scattering1991EnglandCambridge University Press0762.3500110.1017/CBO9780511623998
– reference: PalRKaurHRajuTSKumarCNPeriodic and rational solutions of variable-coefficient modified Korteweg–de Vries equationNonlinear Dyn.201789617622366371510.1007/s11071-017-3475-4
– volume-title: Symmetry and Integration Methods for Differential Equations
  year: 2002
  ident: 3033_CR38
– volume: 76
  start-page: 1669
  year: 2018
  ident: 3033_CR24
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2018.07.018
– volume: 84
  year: 2011
  ident: 3033_CR35
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.84.026606
– volume: 80
  start-page: 1867
  year: 2010
  ident: 3033_CR30
  publication-title: Math. Comput. Simulat.
  doi: 10.1016/j.matcom.2010.02.001
– volume: 36
  start-page: 1
  year: 2012
  ident: 3033_CR36
  publication-title: Math. Method Appl. Sci.
  doi: 10.1002/mma.2561
– volume: 202
  start-page: 328
  year: 2007
  ident: 3033_CR28
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2005.10.043
– volume: 89
  year: 2014
  ident: 3033_CR6
  publication-title: Phys. Scr.
  doi: 10.1088/0031-8949/89/12/125203
– volume: 116
  year: 2021
  ident: 3033_CR15
  publication-title: Appl. Math. Lett.
  doi: 10.1016/j.aml.2020.107004
– volume: 31
  year: 2014
  ident: 3033_CR22
  publication-title: Chin. Phys. Lett.
  doi: 10.1088/0256-307X/31/1/010201
– volume: 42
  start-page: 203
  year: 2004
  ident: 3033_CR27
  publication-title: Int. J. Engng. Sci.
  doi: 10.1016/S0020-7225(03)00284-2
– volume: 95
  year: 2020
  ident: 3033_CR10
  publication-title: Phys. Scr.
  doi: 10.1088/1402-4896/ab8d02
– volume: 214
  start-page: 370
  year: 2009
  ident: 3033_CR29
  publication-title: Appl. Math. Comput.
– year: 2021
  ident: 3033_CR44
  publication-title: J. Ocean Eng. Sci.
  doi: 10.1016/j.joes.2021.09.003
– volume: 92
  start-page: 221
  year: 2018
  ident: 3033_CR18
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-018-4051-2
– volume: 16
  start-page: 1776
  year: 2011
  ident: 3033_CR32
  publication-title: Commun. Nolinear Sci.
  doi: 10.1016/j.cnsns.2010.07.021
– volume: 85
  year: 2012
  ident: 3033_CR20
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.85.056607
– volume: 11
  start-page: 355
  year: 2018
  ident: 3033_CR31
  publication-title: IEEE J. Stars
– volume: 16
  start-page: 563
  year: 2018
  ident: 3033_CR8
  publication-title: Open Phys.
  doi: 10.1515/phys-2018-0073
– volume: 88
  start-page: 132
  year: 2019
  ident: 3033_CR25
  publication-title: Appl. Math. Lett.
  doi: 10.1016/j.aml.2018.08.023
– volume: 96
  year: 2021
  ident: 3033_CR3
  publication-title: Scr.
– volume: 43
  start-page: 141
  year: 2020
  ident: 3033_CR14
  publication-title: B. Malays. Math. Sci. So.
  doi: 10.1007/s40840-018-0668-z
– volume: 71
  start-page: 557
  year: 2016
  ident: 3033_CR37
  publication-title: Z. Naturforsch A
  doi: 10.1515/zna-2016-0078
– volume-title: Solitons, nolinear evolution equations and inverse scattering
  year: 1991
  ident: 3033_CR1
  doi: 10.1017/CBO9780511623998
– volume: 20
  start-page: 7469
  year: 2012
  ident: 3033_CR13
  publication-title: Opt. Express
  doi: 10.1364/OE.20.007469
– volume: 89
  start-page: 617
  year: 2017
  ident: 3033_CR33
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-017-3475-4
– volume: 502
  year: 2020
  ident: 3033_CR7
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/j.jmmm.2020.166590
– volume: 45
  year: 2012
  ident: 3033_CR16
  publication-title: J. Phys. A-Math. Theor.
  doi: 10.1088/1751-8113/45/15/155209
– volume: 323
  start-page: 3059
  year: 2008
  ident: 3033_CR34
  publication-title: Ann. Phys.-New York
  doi: 10.1016/j.aop.2008.04.012
– volume: 39
  start-page: L343
  year: 2006
  ident: 3033_CR43
  publication-title: J. Phys. A: Math. Gen.
  doi: 10.1088/0305-4470/39/20/L08
– volume: 24
  start-page: L513
  year: 1991
  ident: 3033_CR42
  publication-title: J. Phys. A: Math. Gen.
  doi: 10.1088/0305-4470/24/10/003
– volume: 70
  start-page: 119
  year: 2018
  ident: 3033_CR21
  publication-title: Commun. Theor. Phys.
  doi: 10.1088/0253-6102/70/2/119
– volume: 103
  year: 2021
  ident: 3033_CR4
  publication-title: Wave Motion
  doi: 10.1016/j.wavemoti.2021.102719
– ident: 3033_CR12
– volume: 86
  start-page: 1855
  year: 2016
  ident: 3033_CR23
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-016-2998-4
– volume: 50
  start-page: 338
  year: 1981
  ident: 3033_CR2
  publication-title: J. Phys. Soc. Jpn.
  doi: 10.1143/JPSJ.50.338
– volume: 93
  year: 2018
  ident: 3033_CR9
  publication-title: Phys. Scr.
  doi: 10.1088/1402-4896/aacd42
– volume: 51
  start-page: 1298
  year: 2014
  ident: 3033_CR17
  publication-title: Wave Motion
  doi: 10.1016/j.wavemoti.2014.07.012
– volume-title: Applications of Symmetry Methods to Partial Differential Equations
  year: 2010
  ident: 3033_CR39
  doi: 10.1007/978-0-387-68028-6
– volume: 30
  start-page: L95
  year: 1997
  ident: 3033_CR40
  publication-title: J. Phys. A: Math. Gen.
  doi: 10.1088/0305-4470/30/5/004
– volume: 86
  start-page: 150
  year: 2019
  ident: 3033_CR41
  publication-title: Wave Motion
  doi: 10.1016/j.wavemoti.2018.08.008
– volume: 105
  year: 2020
  ident: 3033_CR11
  publication-title: Appl. Math. Lett.
  doi: 10.1016/j.aml.2020.106326
– volume: 77
  year: 2008
  ident: 3033_CR5
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.77.036605
– volume: 73
  year: 2021
  ident: 3033_CR19
  publication-title: Commun. Theor. Phys.
  doi: 10.1088/1572-9494/abf552
– volume: 94
  start-page: 112
  year: 2019
  ident: 3033_CR26
  publication-title: Appl. Math. Lett.
  doi: 10.1016/j.aml.2019.02.028
SSID ssj0000491494
Score 2.3367124
Snippet The Lax pair is developed to construct nonlocal symmetries of the variable-coefficient modified Korteweg–de Vries (vc-mKdV) equation in fluid-filled elastic...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 814
SubjectTerms Applied and Technical Physics
Atomic
Cnoidal waves
Complex Systems
Condensed Matter Physics
Exact solutions
Korteweg-Devries equation
Lie groups
Localization
Mathematical and Computational Physics
Molecular
Optical and Plasma Physics
Physics
Physics and Astronomy
Regular Article
Solitary waves
Symmetry
Theoretical
Tubes
SummonAdditionalLinks – databaseName: Advanced Technologies & Aerospace Database
  dbid: P5Z
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Na9wwEBVp2kIvTT_ptmnQoVex9tqWrVMopSEQWHJISuhF2JpR2ZK1N-vdDb3lD-SUf5hfkhnZm6U9JIeeZQ-CN9K8kUbzhPhiSqRABKBGkHuVUoxRFau5p4SI5_5psXZBbCIfj4uzM3PcH7i1fVnlek8MGzU0js_Ih6yqFOuMttz92YVi1Si-Xe0lNJ6Ip9wlgaUbjrOf92csxH4pAUj7si5KJYY4-z0btpSX6UhxHTu5eJKo_O-gtGGa_1yOhphzsPO_s30lXvZsU37t3OO12ML6jXgeqj5d-1Zcj5s6BDPZ_plOg7ZWK8saJHFtyY0k5t2zB3lZrmik8ZLoolxRes0PrpRrMDSgoLglpw1MPNFZecTVu5f46_bqBlD-CCbxomsoTjalP19OQHl-gggSibvT1ORiWWH7TpwefD_5dqh6fQblkiRaqMIbQHAaU-OM49yqcnGSOzMCWtlQOp0QKljqqiow8zHGQGQMdIFVVkCGyXuxXTc1fhCyINYQ5VXu6au0MqkptUkMN9aBKDfgB0KvAbKub17OGhrntntYHVlG1nbIWkLWBmRtPhDR_Y-zrn_H47_srjG1_YJu7QbQgYjXXrEZfsTkx4dNfhIvRsEbuQp4V2wv5kv8LJ651WLSzveCT98Bx6ABZw
  priority: 102
  providerName: ProQuest
Title Nonlocal symmetries and new interaction waves of the variable-coefficient modified Korteweg–de Vries equation in fluid-filled elastic tubes
URI https://link.springer.com/article/10.1140/epjp/s13360-022-03033-7
https://www.proquest.com/docview/2920165130
Volume 137
WOSCitedRecordID wos000825413200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2190-5444
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0000491494
  issn: 2190-5444
  databaseCode: P5Z
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Database
  customDbUrl:
  eissn: 2190-5444
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0000491494
  issn: 2190-5444
  databaseCode: PCBAR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2190-5444
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0000491494
  issn: 2190-5444
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 2190-5444
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000491494
  issn: 2190-5444
  databaseCode: RSV
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB7RFiQuLb9iS6l84Go12SROfGyrVkiVVqsCVcXFSjxjtKibLJvdrbjxApx4Q56EsZNtgQOV4Bg5Y1kz43yf4_kBeK1LYiBClEPMnUwZY2Tlu7mnbBHn66fFyoZmE_loVFxe6vGvrb58tPv6SjJ8qbt6ttEBzT7NDlo-UqlI-hB09s4kkfkGbDHmFb5rw_nbi5vfK0x8mfunfUTXX-R_x6NbkvnHvWiAm9Od_1joI9juOaY47JziMdyj-gk8CLGetn0K30ZNHSBMtF-m09BRqxVljYIZtvDlI-ZdsoO4Llc80jjBJFGs-FDt06ykbSiUnWC0EtMGJ45JrDjzMbvX9PHH1-9I4iJMSZ-7MuI8p3BXywlK5xMPURAzdl6aWCwrap_B-9OTd8dvZN-VQdokiRaycBoJraJUW239iaqycZJbPUTez1halcTDmEpVVQVlLqYYmYKhKqjKCswoeQ6bdVPTCxAFc4Uor3LHb6WVTnWpdKJ9OR2Mco1uAGptG2P7kuW-c8aV6dKpI-N1bTpdG9a1Cbo2-QCiG8FZV7XjbpG9tfFNv41b41t5xSpjnB9AvDb27fAdU-7-g8xLeDgMTuMDgvdgczFf0iu4b1eLSTvfh62jk9H4fB82xtkHfhofHx36J_b8nw-QAUw
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VAoJLeRWxtIAPcLQ278QHVCGgarVl1UNBFReT2GO0aDfZbvah3vgDnPo_-FH8EsZO0hUc6KkHzo4nif3Ny54HwEuRIykirXmgU8Mj0jG8sN3cI9oRY-un-YlyzSbS4TA7PRXHG_Czy4WxYZWdTHSCWlfKnpH3bVclP4lJ5O5Nz7jtGmVvV7sWGg0sBni-Ipetfn34jvb3VRDsvz95e8DbrgJcke8-55kRGrVKMBJKKOsRFMoPUyUCTXjUuUpCP_AxT4oiw9j46GsyIXSSYRFnOsaQ6N6AmxH9jeWi4_jz5ZkOWdvkcERtGBm5Ln2cfpv2a_IDE4_buHl6XRjy9E8luLZs_7qMdTpu_97_tjr3Yau1ptmbBv4PYAPLh3DbRbWq-hH8GFalU9asPp9MXO-wmuWlZuRLMFsoY9akdbBVvqSRyjAyh9kyJ6YsxshVha7ABullNqn0yJC5zgY2OnmFX399v9DIPjmSeNYUTCeazIwXI82NTbHUDMk3oU9j80WB9TZ8vJa1eAybZVXiE2AZWUVeWqSGnooKEYk8EaGwhYO0lwptepB0gJCqLc5ue4SMZZM47kmLJNkgSRKSpEOSTHvgXU6cNvVJrp6y22FItgKrlmsA9cDvULgevoLk03-TfAF3Dk4-HMmjw-FgB-4GjhNsxPMubM5nC3wGt9RyPqpnzx0_Mfhy3RD9DaMjYFA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwEB6VAhUX_lEXCvjA1dpkk3XiI4KuQEWrSkDVm5V4xmhRN1k22a248QKceEOehLGTtIIDlRBnZ0bWeKz5Jp75BuCFLogDEaKcYOZkyjFGln6ae8on4jx_WqxsGDaRzef56ak-3oHDoRcmVLsPT5JdT4Nnaara8Qpdz20bjWn1eTVuOL1SkfTl6OypSSKza3A99dX0Pml_f3Lxq4VBMOcBaV_d9Rf532PTJeD84400hJ7Znf-06btwu8ee4mXnLPdgh6r7cDPUgNrmAXyf11UIbaL5ulyGSVuNKCoUjLyFp5VYd00Q4rzY8krtBINHseVk27dfSVtToKPgDYlljQvH4FYc-Vrec_r089sPJHESVNKXjl6cdQp3tlmgdL4hEQUxkuetiXZTUvMQPs4OP7x6I_tpDdImSdTK3GkktIpSbbX1mVZp4ySzeoJ8z7GwKoknMRWqLHOauphiZGiGKqdymuOUkkewW9UV7YPIGUNEWZk5_iotdaoLpRPtaXYwyjS6EajhnIztqcz9RI0z07VZR8bb2nS2NmxrE2xtshFEF4Krjs3japGDwRFMf70b40d8xWrK8X8E8XDwl8tXqHz8DzLPYe_49cy8ezs_egK3JsF_fM3wAey26w09hRt22y6a9bPg-r8ALo4I7w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nonlocal+symmetries+and+new+interaction+waves+of+the+variable-coefficient+modified+Korteweg%E2%80%93de+Vries+equation+in+fluid-filled+elastic+tubes&rft.jtitle=European+physical+journal+plus&rft.au=Wu%2C+Jian-Wen&rft.au=He%2C+Jun-Tao&rft.au=Lin%2C+Ji&rft.date=2022-07-01&rft.pub=Springer+Berlin+Heidelberg&rft.eissn=2190-5444&rft.volume=137&rft.issue=7&rft_id=info:doi/10.1140%2Fepjp%2Fs13360-022-03033-7&rft.externalDocID=10_1140_epjp_s13360_022_03033_7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2190-5444&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2190-5444&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2190-5444&client=summon