Nonlocal symmetries and new interaction waves of the variable-coefficient modified Korteweg–de Vries equation in fluid-filled elastic tubes

The Lax pair is developed to construct nonlocal symmetries of the variable-coefficient modified Korteweg–de Vries (vc-mKdV) equation in fluid-filled elastic tubes. To construct new exact solutions with the nonlocal symmetry, we use the localization approach, which can transform the problem of nonloc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European physical journal plus Jg. 137; H. 7; S. 814
Hauptverfasser: Wu, Jian-Wen, He, Jun-Tao, Lin, Ji
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 01.07.2022
Springer Nature B.V
Schlagworte:
ISSN:2190-5444, 2190-5444
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Lax pair is developed to construct nonlocal symmetries of the variable-coefficient modified Korteweg–de Vries (vc-mKdV) equation in fluid-filled elastic tubes. To construct new exact solutions with the nonlocal symmetry, we use the localization approach, which can transform the problem of nonlocal symmetries to Lie point symmmetries. Furthermore, using the classic Lie group reduction method some group invariant solutions of the vc-mKdV equation are obtained. For some interesting solutions, the soliton-cnoidal waves are discussed through the graphical analysis.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2190-5444
2190-5444
DOI:10.1140/epjp/s13360-022-03033-7