On interval-valued nonlinear programming problems

The Wolfe's duality theorems in interval-valued optimization problems are derived in this paper. Four kinds of interval-valued optimization problems are formulated. The Karush–Kuhn–Tucker optimality conditions for interval-valued optimization problems are derived for the purpose of proving the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical analysis and applications Jg. 338; H. 1; S. 299 - 316
1. Verfasser: Wu, Hsien-Chung
Format: Journal Article
Sprache:Englisch
Veröffentlicht: San Diego, CA Elsevier Inc 01.02.2008
Elsevier
Schlagworte:
ISSN:0022-247X, 1096-0813
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Wolfe's duality theorems in interval-valued optimization problems are derived in this paper. Four kinds of interval-valued optimization problems are formulated. The Karush–Kuhn–Tucker optimality conditions for interval-valued optimization problems are derived for the purpose of proving the strong duality theorems. The concept of having no duality gap in weak and strong sense are also introduced, and the strong duality theorems in weak and strong sense are then derived naturally.
ISSN:0022-247X
1096-0813
DOI:10.1016/j.jmaa.2007.05.023