On interval-valued nonlinear programming problems
The Wolfe's duality theorems in interval-valued optimization problems are derived in this paper. Four kinds of interval-valued optimization problems are formulated. The Karush–Kuhn–Tucker optimality conditions for interval-valued optimization problems are derived for the purpose of proving the...
Gespeichert in:
| Veröffentlicht in: | Journal of mathematical analysis and applications Jg. 338; H. 1; S. 299 - 316 |
|---|---|
| 1. Verfasser: | |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
San Diego, CA
Elsevier Inc
01.02.2008
Elsevier |
| Schlagworte: | |
| ISSN: | 0022-247X, 1096-0813 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | The Wolfe's duality theorems in interval-valued optimization problems are derived in this paper. Four kinds of interval-valued optimization problems are formulated. The Karush–Kuhn–Tucker optimality conditions for interval-valued optimization problems are derived for the purpose of proving the strong duality theorems. The concept of having no duality gap in weak and strong sense are also introduced, and the strong duality theorems in weak and strong sense are then derived naturally. |
|---|---|
| ISSN: | 0022-247X 1096-0813 |
| DOI: | 10.1016/j.jmaa.2007.05.023 |