Some properties of a class of symmetric functions
The Schur-convexity and Schur-geometric-convexity of a class of symmetric functions are investigated. As consequences some new proofs of the well-known Ky Fan's inequality and Shapiro's inequality are presented, respectively. We also give another proof of a problem posted by S. Gabler in [...
Uloženo v:
| Vydáno v: | Journal of mathematical analysis and applications Ročník 336; číslo 1; s. 70 - 80 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
San Diego, CA
Elsevier Inc
01.12.2007
Elsevier |
| Témata: | |
| ISSN: | 0022-247X, 1096-0813 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | The Schur-convexity and Schur-geometric-convexity of a class of symmetric functions are investigated. As consequences some new proofs of the well-known Ky Fan's inequality and Shapiro's inequality are presented, respectively. We also give another proof of a problem posted by S. Gabler in [S. Gabler, Aufgabe 830, Elem. Math. 3 (1980) 124–125]. Some interesting matrix and geometric inequalities are established to show the applications of our results. |
|---|---|
| ISSN: | 0022-247X 1096-0813 |
| DOI: | 10.1016/j.jmaa.2007.02.064 |