OmpSs@FPGA Framework for High Performance FPGA Computing

This article presents the new features of the OmpSs@FPGA framework. OmpSs is a data-flow programming model that supports task nesting and dependencies to target asynchronous parallelism and heterogeneity. OmpSs@FPGA is the extension of the programming model addressed specifically to FPGAs. OmpSs env...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on computers Jg. 70; H. 12; S. 2029 - 2042
Hauptverfasser: de Haro, Juan Miguel, Bosch, Jaume, Filgueras, Antonio, Vidal, Miquel, Jimenez-Gonzalez, Daniel, Alvarez, Carlos, Martorell, Xavier, Ayguade, Eduard, Labarta, Jesus
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 01.12.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:0018-9340, 1557-9956
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This article presents the new features of the OmpSs@FPGA framework. OmpSs is a data-flow programming model that supports task nesting and dependencies to target asynchronous parallelism and heterogeneity. OmpSs@FPGA is the extension of the programming model addressed specifically to FPGAs. OmpSs environment is built on top of Mercurium source to source compiler and Nanos++ runtime system. To address FPGA specifics Mercurium compiler implements several FPGA related features as local variable caching, wide memory accesses or accelerator replication. In addition, part of the Nanos++ runtime has been ported to hardware. Driven by the compiler this new hardware runtime adds new features to FPGA codes, such as task creation and dependence management, providing both performance increases and ease of programming. To demonstrate these new capabilities, different high performance benchmarks have been evaluated over different FPGA platforms using the OmpSs programming model. The results demonstrate that programs that use the OmpSs programming model achieve very competitive performance with low to moderate porting effort compared to other FPGA implementations.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0018-9340
1557-9956
DOI:10.1109/TC.2021.3086106