Single and multi-solitary wave solutions to a class of nonlinear evolution equations

In this paper, an effective discrimination algorithm is presented to deal with equations arising from physical problems. The aim of the algorithm is to discriminate and derive the single traveling wave solutions of a large class of nonlinear evolution equations. Many examples are given to illustrate...

Full description

Saved in:
Bibliographic Details
Published in:Journal of mathematical analysis and applications Vol. 343; no. 1; pp. 273 - 298
Main Authors: Wang, Deng-Shan, Li, Hongbo
Format: Journal Article
Language:English
Published: Amsterdam Elsevier Inc 01.07.2008
Elsevier
Subjects:
ISSN:0022-247X, 1096-0813
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, an effective discrimination algorithm is presented to deal with equations arising from physical problems. The aim of the algorithm is to discriminate and derive the single traveling wave solutions of a large class of nonlinear evolution equations. Many examples are given to illustrate the algorithm. At the same time, some factorization technique are presented to construct the traveling wave solutions of nonlinear evolution equations, such as Camassa–Holm equation, Kolmogorov–Petrovskii–Piskunov equation, and so on. Then a direct constructive method called multi-auxiliary equations expansion method is described to derive the multi-solitary wave solutions of nonlinear evolution equations. Finally, a class of novel multi-solitary wave solutions of the ( 2 + 1 ) -dimensional asymmetric version of the Nizhnik–Novikov–Veselov equation are given by three direct methods. The algorithm proposed in this paper can be steadily applied to some other nonlinear problems.
ISSN:0022-247X
1096-0813
DOI:10.1016/j.jmaa.2008.01.039