Increasing color saturation by optimizing light spectra constrained on color rendering properties

Enhancing the color saturation of objects via illumination with specially designed light spectra is promising in many commercial and scientific applications. Existing literature has focused on studying the colors that can be rendered by white light with various correlated color temperatures, and by...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of the Optical Society of America. A, Optics, image science, and vision Ročník 33; číslo 2; s. 192
Hlavní autori: Wu, Haining, Dong, Jianfei, Zhang, Guoqi
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States 01.02.2016
ISSN:1520-8532, 1520-8532
On-line prístup:Zistit podrobnosti o prístupe
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Enhancing the color saturation of objects via illumination with specially designed light spectra is promising in many commercial and scientific applications. Existing literature has focused on studying the colors that can be rendered by white light with various correlated color temperatures, and by the mixed light from various monochromatic light-emitting diodes. However, very little literature has been devoted to methods that can actively configure the light spectrum to enhance the color saturation of an arbitrary object. This paper proposes an optimization-based method to extend the gamut that can be achieved by a given polychromatic lamp toward a chosen direction, i.e., to increase the saturation of a specific color. Moreover, to trade-off the increased saturation of a color sample with the reduced colorfulness of other samples, constraints with tunable thresholds are imposed to the optimization problem to bound the variation of a contrast color sample. In addition, the effect of uncontrollable ambient light can be taken into account by mild modifications of the optimization problem. Simulation results show that the optimized light spectrum can effectively enhance the saturation of any specific color, while maintaining the other rendered colors as intact as possible. Visual experiments have also been conducted with 22 human subjects, whose responses agree with the simulation results.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1520-8532
1520-8532
DOI:10.1364/JOSAA.33.000192