Primal–dual approximation algorithm for the two-level facility location problem via a dual quasi-greedy approach
The main contribution of this work is to propose a primal–dual combinatorial 3(1+ε)-approximation algorithm for the two-level facility location problem (2-LFLP) by exploring the approximation oracle concept. This result improves the previous primal–dual 6-approximation algorithm for the multilevel f...
Uloženo v:
| Vydáno v: | Theoretical computer science Ročník 562; s. 213 - 226 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier B.V
2015
|
| Témata: | |
| ISSN: | 0304-3975, 1879-2294 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | The main contribution of this work is to propose a primal–dual combinatorial 3(1+ε)-approximation algorithm for the two-level facility location problem (2-LFLP) by exploring the approximation oracle concept. This result improves the previous primal–dual 6-approximation algorithm for the multilevel facility location problem, and also matches the previous primal–dual approximation ratio for the single-level facility location problem. One of the major merits of primal–dual type algorithms is their easy adaption to other variants of the facility location problems. As a demonstration, our primal–dual approximation algorithm can be easily adapted to several variants of the 2-LFLP, including models with stochastic scenario, dynamically arrived demands, and linear facility cost. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ISSN: | 0304-3975 1879-2294 |
| DOI: | 10.1016/j.tcs.2014.09.045 |