Clustering documents with labeled and unlabeled documents using fuzzy semi-Kmeans

While focusing on document clustering, this work presents a fuzzy semi-supervised clustering algorithm called fuzzy semi-Kmeans. The fuzzy semi-Kmeans is an extension of K-means clustering model, and it is inspired by an EM algorithm and a Gaussian mixture model. Additionally, the fuzzy semi-Kmeans...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fuzzy sets and systems Jg. 221; S. 48 - 64
Hauptverfasser: Liu, Chien-Liang, Chang, Tao-Hsing, Li, Hsuan-Hsun
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 16.06.2013
Schlagworte:
ISSN:0165-0114, 1872-6801
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:While focusing on document clustering, this work presents a fuzzy semi-supervised clustering algorithm called fuzzy semi-Kmeans. The fuzzy semi-Kmeans is an extension of K-means clustering model, and it is inspired by an EM algorithm and a Gaussian mixture model. Additionally, the fuzzy semi-Kmeans provides the flexibility to employ different fuzzy membership functions to measure the distance between data. This work employs Gaussian weighting function to conduct experiments, but cosine similarity function can be used as well. This work conducts experiments on three data sets and compares fuzzy semi-Kmeans with several methods. The experimental results indicate that fuzzy semi-Kmeans can generally outperform the other methods.
Bibliographie:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0165-0114
1872-6801
DOI:10.1016/j.fss.2013.01.004