Clustering documents with labeled and unlabeled documents using fuzzy semi-Kmeans

While focusing on document clustering, this work presents a fuzzy semi-supervised clustering algorithm called fuzzy semi-Kmeans. The fuzzy semi-Kmeans is an extension of K-means clustering model, and it is inspired by an EM algorithm and a Gaussian mixture model. Additionally, the fuzzy semi-Kmeans...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Fuzzy sets and systems Ročník 221; s. 48 - 64
Hlavní autori: Liu, Chien-Liang, Chang, Tao-Hsing, Li, Hsuan-Hsun
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier B.V 16.06.2013
Predmet:
ISSN:0165-0114, 1872-6801
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:While focusing on document clustering, this work presents a fuzzy semi-supervised clustering algorithm called fuzzy semi-Kmeans. The fuzzy semi-Kmeans is an extension of K-means clustering model, and it is inspired by an EM algorithm and a Gaussian mixture model. Additionally, the fuzzy semi-Kmeans provides the flexibility to employ different fuzzy membership functions to measure the distance between data. This work employs Gaussian weighting function to conduct experiments, but cosine similarity function can be used as well. This work conducts experiments on three data sets and compares fuzzy semi-Kmeans with several methods. The experimental results indicate that fuzzy semi-Kmeans can generally outperform the other methods.
Bibliografia:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0165-0114
1872-6801
DOI:10.1016/j.fss.2013.01.004