The Lagrange multiplier rule for super efficiency in vector optimization
In this paper, we study constrained multiobjective optimization problems with objectives being closed-graph multifunctions in Banach spaces. In terms of the coderivatives and Clarke's normal cones, we establish Lagrange multiplier rules for super efficiency as necessary or sufficient optimality...
Gespeichert in:
| Veröffentlicht in: | Journal of mathematical analysis and applications Jg. 342; H. 1; S. 503 - 513 |
|---|---|
| 1. Verfasser: | |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
San Diego, CA
Elsevier Inc
01.06.2008
Elsevier |
| Schlagworte: | |
| ISSN: | 0022-247X, 1096-0813 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | In this paper, we study constrained multiobjective optimization problems with objectives being closed-graph multifunctions in Banach spaces. In terms of the coderivatives and Clarke's normal cones, we establish Lagrange multiplier rules for super efficiency as necessary or sufficient optimality conditions of the above problems. |
|---|---|
| ISSN: | 0022-247X 1096-0813 |
| DOI: | 10.1016/j.jmaa.2007.12.027 |