Three-operator splitting algorithm for a class of variational inclusion problems
This paper concerns with a new three-operator splitting algorithm for solving a class of variational inclusions. The main advantage of the proposed algorithm is that it can be easily implemented without the prior knowledge of Lipschitz constant, strongly monotone constant and cocoercive constant of...
Uloženo v:
| Vydáno v: | Bulletin of the Iranian Mathematical Society Ročník 46; číslo 4; s. 1055 - 1071 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Singapore
Springer Singapore
01.08.2020
|
| Témata: | |
| ISSN: | 1017-060X, 1735-8515 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | This paper concerns with a new three-operator splitting algorithm for solving a class of variational inclusions. The main advantage of the proposed algorithm is that it can be easily implemented without the prior knowledge of Lipschitz constant, strongly monotone constant and cocoercive constant of component operators. A reason explained for this is that the algorithm uses a sequence of stepsizes which is diminishing and non-summable. The strong convergence of the algorithm is established. Several fundamental numerical experiments are given to illustrate the behavior of the new algorithm and compare it with other algorithms. |
|---|---|
| ISSN: | 1017-060X 1735-8515 |
| DOI: | 10.1007/s41980-019-00312-5 |