Spline-backfitted kernel smoothing of partially linear additive model

A spline-backfitted kernel smoothing method is proposed for partially linear additive model. Under assumptions of stationarity and geometric mixing, the proposed function and parameter estimators are oracally efficient and fast to compute. Such superior properties are achieved by applying to the dat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of statistical planning and inference Jg. 141; H. 1; S. 204 - 219
Hauptverfasser: Ma, Shujie, Yang, Lijian
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Kidlington Elsevier B.V 2011
Elsevier
Schlagworte:
ISSN:0378-3758, 1873-1171
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A spline-backfitted kernel smoothing method is proposed for partially linear additive model. Under assumptions of stationarity and geometric mixing, the proposed function and parameter estimators are oracally efficient and fast to compute. Such superior properties are achieved by applying to the data spline smoothing and kernel smoothing consecutively. Simulation experiments with both moderate and large number of variables confirm the asymptotic results. Application to the Boston housing data serves as a practical illustration of the method.
ISSN:0378-3758
1873-1171
DOI:10.1016/j.jspi.2010.05.028