Computation of three-dimensional standing water waves

We develop a method for computing three-dimensional gravity-driven water waves, which we use to search for time-periodic standing wave solutions. We simulate an inviscid, irrotational, incompressible fluid bounded below by a flat wall, and above by an evolving free surface. The computations make use...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of computational physics Ročník 255; s. 612 - 638
Hlavní autoři: Rycroft, Chris H., Wilkening, Jon
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Inc 15.12.2013
Témata:
ISSN:0021-9991, 1090-2716
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We develop a method for computing three-dimensional gravity-driven water waves, which we use to search for time-periodic standing wave solutions. We simulate an inviscid, irrotational, incompressible fluid bounded below by a flat wall, and above by an evolving free surface. The computations make use of spectral derivatives on the surface, but also require computing a velocity potential in the bulk, which we carry out using a finite element method with fourth-order elements that are curved to match the free surface. This computationally expensive step is solved using a parallel multigrid algorithm, which is discussed in detail. Time-periodic solutions are searched for using a previously developed overdetermined shooting method. Several families of large-amplitude three-dimensional standing waves are found in both shallow and deep regimes, and their physical characteristics are examined and compared to previously known two-dimensional solutions.
Bibliografie:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0021-9991
1090-2716
DOI:10.1016/j.jcp.2013.08.026