Computation of three-dimensional standing water waves

We develop a method for computing three-dimensional gravity-driven water waves, which we use to search for time-periodic standing wave solutions. We simulate an inviscid, irrotational, incompressible fluid bounded below by a flat wall, and above by an evolving free surface. The computations make use...

Full description

Saved in:
Bibliographic Details
Published in:Journal of computational physics Vol. 255; pp. 612 - 638
Main Authors: Rycroft, Chris H., Wilkening, Jon
Format: Journal Article
Language:English
Published: Elsevier Inc 15.12.2013
Subjects:
ISSN:0021-9991, 1090-2716
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We develop a method for computing three-dimensional gravity-driven water waves, which we use to search for time-periodic standing wave solutions. We simulate an inviscid, irrotational, incompressible fluid bounded below by a flat wall, and above by an evolving free surface. The computations make use of spectral derivatives on the surface, but also require computing a velocity potential in the bulk, which we carry out using a finite element method with fourth-order elements that are curved to match the free surface. This computationally expensive step is solved using a parallel multigrid algorithm, which is discussed in detail. Time-periodic solutions are searched for using a previously developed overdetermined shooting method. Several families of large-amplitude three-dimensional standing waves are found in both shallow and deep regimes, and their physical characteristics are examined and compared to previously known two-dimensional solutions.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0021-9991
1090-2716
DOI:10.1016/j.jcp.2013.08.026