The arithmetic of continuous Z-numbers

In order to deal with imprecision and partial reliability of real-world information, Prof. Zadeh suggested the concept of a Z-number Z=(A, B), as an ordered pair of continuous fuzzy numbers A and B. The first describes a linguistic value, and the second one is the associated reliability. Unfortunate...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Information sciences Ročník 373; s. 441 - 460
Hlavní autoři: Aliev, R.A., Huseynov, O.H., Zeinalova, L.M.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Inc 10.12.2016
Témata:
ISSN:0020-0255, 1872-6291
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In order to deal with imprecision and partial reliability of real-world information, Prof. Zadeh suggested the concept of a Z-number Z=(A, B), as an ordered pair of continuous fuzzy numbers A and B. The first describes a linguistic value, and the second one is the associated reliability. Unfortunately, up to day there is no works devoted to arithmetic of continuous Z-numbers in existence. An original formulation of operations over continuous Z-numbers proposed by Zadeh includes complex non-linear variational problems. We propose an alternative approach which has a better computational complexity and accuracy tradeoff. The proposed approach is based on linear programming and other simple optimization problems. We developed basic arithmetic operations such as addition, subtraction, multiplication and division, and some algebraic operations as maximum, minimum, square and square root of continuous Z-numbers. Vast compendium of examples shows validity of the suggested approach.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0020-0255
1872-6291
DOI:10.1016/j.ins.2016.08.078